Llama-2-13b-ONNX / ChatApp /interface /hddr_llama_onnx_interface.py
alpindale's picture
Upload folder using huggingface_hub
7b361da
raw
history blame
13 kB
import torch
import onnxruntime
import numpy as np
from sentencepiece import SentencePieceProcessor
from typing import List
import os
import logging
import gc
from .base_interface import BaseLLMInterface
from ChatApp.app_modules.utils import (
is_stop_word_or_prefix,
convert_to_markdown,
shared_state,
)
class Tokenizer:
def __init__(self, model_path: str):
# reload tokenizer
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
assert type(s) is str
t = self.sp_model.encode(s)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int]) -> str:
return self.sp_model.decode(t)
class LlamaOnnxInterface(BaseLLMInterface):
def __init__(self, onnx_file="", embedding_file="", tokenizer_path=""):
super().__init__()
self.onnx_file = onnx_file
self.embedding_file = embedding_file
self.tokenizer_path = tokenizer_path
self.total_count = 0
def initialize(self):
# Create the ONNX session
logging.info(f"Creating ONNX session for [{self.onnx_file}]")
options = onnxruntime.SessionOptions()
self.llm_session = onnxruntime.InferenceSession(
self.onnx_file,
sess_options=options,
providers=[
"DmlExecutionProvider",
"CUDAExecutionProvider",
"CPUExecutionProvider",
],
)
# get the data type used by the model
data_type_str = self.llm_session.get_inputs()[0].type
if data_type_str == "tensor(float16)":
self.data_type = np.float16
elif data_type_str == "tensor(float32)":
self.data_type = np.float32
else:
raise Exception(f"Unknown data type {data_type_str}")
logging.info(f"Detected Data Type [{self.data_type}]")
# Get the relevant shapes so we can create the inputs
for inputs_meta in self.llm_session._inputs_meta:
if inputs_meta.name == "x":
x_shape = inputs_meta.shape
elif inputs_meta.name == "attn_mask":
attn_mask_shape = inputs_meta.shape
elif inputs_meta.name == "k_cache":
k_cache_shape = inputs_meta.shape
self.hidden_size = x_shape[2]
self.max_seq_len = attn_mask_shape[1]
self.n_layers = k_cache_shape[1]
self.n_heads = k_cache_shape[3]
# Initialize the tokenizer and produce the initial tokens.
self.tokenizer = Tokenizer(model_path=self.tokenizer_path)
# create the embedding layer.
logging.info(
f"Creating the Embedding Layer. Size [{self.tokenizer.n_words}, {self.hidden_size}]"
)
self.embeddingLayer = torch.nn.Embedding(
self.tokenizer.n_words, self.hidden_size
)
# rg hack - dont have the embeddings.pth file - taking it from the original llama model
d = torch.load(self.embedding_file)
self.embeddingLayer.load_state_dict(d)
self.embeddingLayer.eval()
# Create the attention mask.
self.attn_mask = -10000.0 * torch.triu(
torch.ones(attn_mask_shape), diagonal=1
).cpu().detach().numpy().astype(self.data_type)
# Create the K and V caches.
self.head_dim = int(self.hidden_size / self.n_heads)
self.k_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
self.v_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
def shutdown(self):
pass
def generate_prompt_with_history(self, text, history, tokenizer, max_length=2048):
prompt = "[|Human|]Hey there I am a human that would like to have\
a conversation with you.\n[|AI|]Sure, I am happy to answer most questions\
\n[|Human|]Great, I insist that we take turns.\n[|AI|]I agree, we should\
take turns.\n[|Human|]Great, can we also keep answers short\n[|AI|]Yes, \
short answers are usually best"
history = ["\n[|Human|]{}\n[|AI|]{}".format(x[0], x[1]) for x in history]
history.append("\n[|Human|]{}\n[|AI|]".format(text))
history_text = ""
flag = False
for x in history[::-1]:
# tokens = self.tokenizer.encode(text, bos=True, eos=False)
if (
len(
self.tokenizer.encode(
prompt + history_text + x, bos=True, eos=False
)
)
<= max_length
):
history_text = x + history_text
flag = True
else:
break
if flag:
return prompt + history_text, torch.tensor(
self.tokenizer.encode(prompt + history_text, bos=True, eos=False)
).unsqueeze(0)
else:
return None
def sample_logits(
self,
logits: np.ndarray,
sampling_method: str = "greedy",
sampling_value: float = None,
temperature: float = 1.0,
) -> np.ndarray:
if temperature == 0 or sampling_method == "greedy":
next_token = np.argmax(logits, axis=-1).astype(np.int64)
elif sampling_method == "top_k" or sampling_method == "top_p":
assert sampling_value is not None
# temperature, converting to probabilities and sorting are common to both top-k and top-p
# convert logits to 32-bit float to avoid numerical issues with np.exp
logits = logits.astype(np.float32)
# Scale the logits by the temperature
logits /= temperature
# Convert logits to probabilities
probs = np.exp(logits) / np.sum(np.exp(logits))
# Sort th probabilities and indexes
sorted_probs = np.sort(probs)[:, ::-1]
sorted_indices = np.argsort(probs)[:, ::-1]
# find the index of interest for each of the methods.
if sampling_method == "top_k":
index_of_interest = int(sampling_value)
elif sampling_method == "top_p":
p = sampling_value
cumulative_probs = np.cumsum(sorted_probs, axis=-1)
# find the value of the first cumalitive probability that exceeds p
for index_of_interest, cumulative_prob in enumerate(
cumulative_probs[0]
):
if cumulative_prob > p:
break
probs_of_interest = sorted_probs[:, : index_of_interest + 1]
indices_of_interest = sorted_indices[:, : index_of_interest + 1]
# Normalize the probabilities and select the next token
probs_of_interest /= np.sum(probs_of_interest)
next_token = np.array(
[np.random.choice(indices_of_interest[0], p=probs_of_interest[0])]
)
else:
raise Exception(f"Unknown sampling method {sampling_method}")
return next_token
def greedy_search(
self,
input_ids,
model,
tokenizer,
stop_words: list,
max_length: int,
temperature: float = 1.0,
top_p: float = 1.0,
top_k: int = 25,
):
generated_tokens = []
pos = np.array(0)
x = (
self.embeddingLayer(torch.tensor(input_ids))
.detach()
.cpu()
.numpy()
.astype(self.data_type)
)
for i in range(max_length):
results = self.llm_session.run(
None,
{
"x": x,
"attn_mask": self.attn_mask,
"k_cache": self.k_cache[:, :, :pos],
"v_cache": self.v_cache[:, :, :pos],
"pos": pos.astype(np.int64),
},
)
logits, k_out, v_out = results[:3]
next_token = self.sample_logits(logits, "top_p", top_p, temperature)
next_token = next_token.reshape(1, -1)
# Stop if/when we get an ENDOFTEXT token before reaching maximum sequence length
if next_token[0] == tokenizer.eos_id:
del logits
gc.collect()
return
input_ids = torch.cat((input_ids, torch.tensor(next_token)), dim=-1)
generated_tokens.append(next_token[0].item())
text = tokenizer.decode(generated_tokens)
seq_len = x.shape[1]
self.k_cache[:, :, pos : pos + seq_len] = k_out
self.v_cache[:, :, pos : pos + seq_len] = v_out
pos = np.array(int(pos) + seq_len)
x = (
self.embeddingLayer(torch.tensor(next_token))
.unsqueeze(0)
.reshape([1, 1, self.hidden_size])
.cpu()
.detach()
.numpy()
.astype(self.data_type)
)
yield text
if any([x in text for x in stop_words]):
del logits
gc.collect()
return
def predict(
self,
text,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
):
if text == "":
yield chatbot, history, "Empty context."
return
try:
self.llm_session
except (ValueError, RuntimeError, TypeError):
yield [[text, "No Model Found"]], [], "No Model Found"
return
inputs = self.generate_prompt_with_history(
text, history, self.tokenizer, max_length=max_context_length_tokens
)
if inputs is None:
yield chatbot, history, "Input too long."
return
else:
prompt, inputs = inputs
input_ids = inputs[:, -max_context_length_tokens:]
# global total_count
self.total_count += 1
print(self.total_count)
self.head_dim = int(self.hidden_size / self.n_heads)
self.k_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
self.v_cache = np.zeros(
[1, self.n_layers, self.max_seq_len, self.n_heads, self.head_dim],
dtype=self.data_type,
)
x = input_ids
for x in self.greedy_search(
input_ids,
self.llm_session,
self.tokenizer,
stop_words=["[|Human|]", "[|AI|]"],
max_length=max_length_tokens,
temperature=temperature,
top_p=top_p,
):
if is_stop_word_or_prefix(x, ["[|Human|]", "[|AI|]"]) is False:
if "[|Human|]" in x:
x = x[: x.index("[|Human|]")].strip()
if "[|AI|]" in x:
x = x[: x.index("[|AI|]")].strip()
x = x.strip()
a, b = [[y[0], convert_to_markdown(y[1])] for y in history] + [
[text, convert_to_markdown(x)]
], history + [[text, x]]
yield a, b, "Generating..."
if shared_state.interrupted:
shared_state.recover()
try:
yield a, b, "Stop: Success"
return
except Exception as e:
print(type(e).__name__, e)
pass
del input_ids
gc.collect()
torch.cuda.empty_cache()
try:
yield a, b, "Generate: Success"
except Exception as e:
print(type(e).__name__, e)
pass
return
def retry(
self,
text,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
):
logging.info("Retry...")
if len(history) == 0:
yield chatbot, history, "Empty context"
return
chatbot.pop()
inputs = history.pop()[0]
for x in self.predict(
inputs,
chatbot,
history,
top_p,
temperature,
max_length_tokens,
max_context_length_tokens,
):
yield x