a2c-PandaReachDense-v3 / config.json
alv31415's picture
Initial commit
12c6291
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7cc019f677f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7cc019f62ac0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693411790382865579, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhQCwP+9Tsb4PcF6/esJyPsmH27vbEtA+6CnsvTTSyT6xr2q+18ELwJ7/Dz8lPaI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0pW4P8jZ975lhwS/xtWnPteMLD9dHRQ+g4mDvwnYpT/eKYa++sLBv4v+pT4dKJ4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACFALA/71Oxvg9wXr9zrm8+syEUPz51z796wnI+yYfbu9sS0D7Eevg+qaWnu+zCwD7oKey9NNLJPrGvar4S6PW/Ib3NP5NBs7/XwQvAnv8PPyU9oj/EVQI/TizuPjoZ5z+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 1.3750159 -0.3463435 -0.8688974 ]\n [ 0.23707 -0.00669954 0.40639386]\n [-0.1153143 0.39418185 -0.22918583]\n [-2.183706 0.56249416 1.267491 ]]", "desired_goal": "[[ 1.4420722 -0.4840834 -0.51769096]\n [ 0.32780284 0.67402405 0.14464326]\n [-1.027634 1.2956554 -0.26203817]\n [-1.5137627 0.32420763 1.2355992 ]]", "observation": "[[ 1.3750159 -0.3463435 -0.8688974 0.23406391 0.5786392 -1.6207654 ]\n [ 0.23707 -0.00669954 0.40639386 0.48531163 -0.00511618 0.37648714]\n [-0.1153143 0.39418185 -0.22918583 -1.9211447 1.6073343 -1.4004387 ]\n [-2.183706 0.56249416 1.267491 0.5091212 0.46518177 1.8054574 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAW9H7PWrrML180QQ+03n7PevR2j050X89cm7kvV+s5j0WRko+GaUJvMJOhL3iRYA+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.12295791 -0.04319326 0.12970537]\n [ 0.12279096 0.1068457 0.06245539]\n [-0.11153878 0.11263346 0.19753298]\n [-0.00840118 -0.06460334 0.25053316]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8tyPuG9HtqMAWyUSwSMAXSUR0Cknsd3bEgodX2UKGgGR7/D6JqIrOJMaAdLA2gIR0CknkubAk9mdX2UKGgGR7/FQbdadMCcaAdLA2gIR0CkngyDqW1MdX2UKGgGR7++9xp+MIeHaAdLAmgIR0CkntSLIgeSdX2UKGgGR7/NOcDr7fpEaAdLA2gIR0CknpCZfD1odX2UKGgGR7+6/vfCQ9zPaAdLAmgIR0Cknlks8PnTdX2UKGgGR7+4XJo0ygwoaAdLAmgIR0CknuTRQaaTdX2UKGgGR7+7XtjTa0x/aAdLAmgIR0CknqCSA6MjdX2UKGgGR7/VuIhyKekIaAdLA2gIR0CkniPQv6CUdX2UKGgGR7+9WNm16Vt5aAdLAmgIR0CknmnDziCKdX2UKGgGR7++E384xUNsaAdLAmgIR0CknvJSzgMudX2UKGgGR7/LvitJWeYlaAdLA2gIR0CknrSApazNdX2UKGgGR7/CISDh99c9aAdLA2gIR0Cknjd74SHudX2UKGgGR7/SS/j81n/UaAdLA2gIR0Cknn0xdpqRdX2UKGgGR7+YzJp35eqraAdLAWgIR0Cknj3yiEg4dX2UKGgGR7/J6Uqx1PnCaAdLA2gIR0CknwktNBWxdX2UKGgGR7/RaHsTnJT3aAdLA2gIR0CknswiaAnVdX2UKGgGR7+y+pOvdM0xaAdLAmgIR0Ckno8jqv/zdX2UKGgGR7+7epGWldkbaAdLAmgIR0CknxgtWdVedX2UKGgGR7/GKdhAnlXBaAdLA2gIR0CknlamXPZ7dX2UKGgGR7+ogA6uGKyfaAdLAWgIR0Cknx6qCHymdX2UKGgGR7/DFsHjZL7GaAdLAmgIR0Ckntp5VwPzdX2UKGgGR7+jncL0Bfa6aAdLAWgIR0CknyUgjhUBdX2UKGgGR7/KWsRxtHhCaAdLA2gIR0CknqOG9HtndX2UKGgGR7+8BnzxwyZbaAdLAmgIR0CknzYEOiFkdX2UKGgGR7/ecgyM1jy4aAdLBGgIR0CknnSsKb8WdX2UKGgGR7/NISUTtb9qaAdLBGgIR0CknvfywwCbdX2UKGgGR7/QvgWJrLyMaAdLA2gIR0CknrsOwxFidX2UKGgGR7+4MhHLA57xaAdLAmgIR0Ckn0OTaCcxdX2UKGgGR7/RfR/mT1TSaAdLA2gIR0CknogZsKsudX2UKGgGR7/GjesPrfLtaAdLA2gIR0Cknw7TtsvadX2UKGgGR7/NThHbypaSaAdLA2gIR0CkntFEJBw/dX2UKGgGR7/Ti7CiyprDaAdLA2gIR0Ckn1nSv1UVdX2UKGgGR7+fdIoVmBe5aAdLAWgIR0CknxVurIYFdX2UKGgGR7/F7hvR7Z3+aAdLAmgIR0CknpiUHIIXdX2UKGgGR7/OF/x2B8QaaAdLA2gIR0CknuQ6ZH/cdX2UKGgGR7/GRcNYr8R+aAdLA2gIR0Ckn2yprDZUdX2UKGgGR7/UQ0oBq9GraAdLA2gIR0CknyhP0qYrdX2UKGgGR7/RSXt0FKTTaAdLA2gIR0CknqtG3F1kdX2UKGgGR7+zK2a2F36iaAdLAmgIR0Cknzfo7muDdX2UKGgGR7/GkRBeHBUJaAdLA2gIR0CknvqAz544dX2UKGgGR7/NbHp8neBQaAdLA2gIR0CknsGukk8idX2UKGgGR7/X7wKBun/DaAdLBGgIR0Ckn4mR/3FldX2UKGgGR7+87zTWoWHlaAdLAmgIR0Ckn0U0Nz8xdX2UKGgGR7/EcDr7fpEAaAdLAmgIR0CknweuNgjRdX2UKGgGR7/HeWOZLIxQaAdLA2gIR0Ckn584xUNsdX2UKGgGR7/JCdBjWkJsaAdLA2gIR0Ckn1t/OMVDdX2UKGgGR7/MOxSpBHCoaAdLA2gIR0Cknx4JE6T4dX2UKGgGR7/OvxH5JsfraAdLA2gIR0CknzBpxm03dX2UKGgGR7/dyj59E1EWaAdLB2gIR0CknvE5p8F7dX2UKGgGR7/WVBD5TIeYaAdLBGgIR0Ckn7w/X5FgdX2UKGgGR7/YCqZML4N7aAdLBGgIR0Ckn3ipm29ddX2UKGgGR7+zMt9QXQ+maAdLAmgIR0CknwLR8c+8dX2UKGgGR7/AziS7oSteaAdLAmgIR0Ckn4ayrxRVdX2UKGgGR7/J9nbqQiiZaAdLA2gIR0Ckn0mPo3aSdX2UKGgGR7/TrbxmTTvzaAdLA2gIR0Ckn9JaiblSdX2UKGgGR7/Sy1/lQuVYaAdLA2gIR0CknxiKiwjddX2UKGgGR7/QlZ5iVjZtaAdLA2gIR0Ckn2JwS8J2dX2UKGgGR7/QXYUWVNYbaAdLA2gIR0Ckn+tGmUGFdX2UKGgGR7/VZWq94/u9aAdLBGgIR0Ckn6evQnhLdX2UKGgGR7/CdjG1hLGraAdLAmgIR0CknysI/qxDdX2UKGgGR7+3P6be/Ho6aAdLAmgIR0Ckn/pbt7a7dX2UKGgGR7/OIcinpB5YaAdLA2gIR0Ckn3jGkvbodX2UKGgGR7+fBnBciW3SaAdLAWgIR0CkoAJzcRDkdX2UKGgGR7/W95yEL6UJaAdLA2gIR0Ckn79+w1R+dX2UKGgGR7/Sa2nbZezEaAdLA2gIR0Ckn0NgjQiSdX2UKGgGR7/INjslb/wRaAdLA2gIR0Ckn5areZXudX2UKGgGR7/VXw9aEBbOaAdLA2gIR0CkoCDDCP6sdX2UKGgGR7/NyFPBSDRMaAdLA2gIR0Ckn1/Vy3kQdX2UKGgGR7/YWDHwPRReaAdLBGgIR0Ckn+RlQMx5dX2UKGgGR7/E9Zid8RcvaAdLA2gIR0Ckn62om5UcdX2UKGgGR7/JJXhfjS5RaAdLA2gIR0CkoDpTuOS4dX2UKGgGR7/K6lLvkRzzaAdLA2gIR0Ckn3lfiPyTdX2UKGgGR7+/GJemelKsaAdLAmgIR0Ckn7/vOQhfdX2UKGgGR7/XsSCe2/i6aAdLBGgIR0CkoAVJDmbLdX2UKGgGR7/PJAdGRV6vaAdLA2gIR0CkoFEyk9EDdX2UKGgGR7/T5uqFRHf/aAdLA2gIR0Ckn5AtnPE9dX2UKGgGR7+6wW3z+WGAaAdLAmgIR0CkoBPLgXMydX2UKGgGR7+9soDxLCemaAdLAmgIR0CkoGLG7z06dX2UKGgGR7/VvxH5JsfraAdLBGgIR0Ckn+FfJFLGdX2UKGgGR7/YkFfReC04aAdLBGgIR0Ckn68oH9m6dX2UKGgGR7/FhmXgLqlhaAdLA2gIR0CkoHfvnbItdX2UKGgGR7/WOhkAggX/aAdLBGgIR0CkoDRREWqMdX2UKGgGR7/J0T101ZTyaAdLA2gIR0Ckn/bxVhkRdX2UKGgGR7+KESM98qnWaAdLAWgIR0CkoH/QjUutdX2UKGgGR7/SQ/oq0+khaAdLA2gIR0Ckn8hcRlH0dX2UKGgGR7/IGN70Fr2yaAdLA2gIR0CkoExGDtgKdX2UKGgGR7/Ttg8bJfY0aAdLA2gIR0CkoA7kfcN6dX2UKGgGR7/IWOZLIxQBaAdLA2gIR0CkoJf7JnxsdX2UKGgGR7+mQCCBf8dgaAdLAWgIR0CkoBYT0xubdX2UKGgGR7/Ervsqril0aAdLAmgIR0Ckn9cBdUsGdX2UKGgGR7/QLPldTo+waAdLA2gIR0CkoGFU6xPgdX2UKGgGR7/KCvHLidauaAdLA2gIR0CkoK/Y8Md+dX2UKGgGR7/KsuFpPAO8aAdLA2gIR0CkoC3eFcptdX2UKGgGR7/ScJtzjm0WaAdLBGgIR0Ckn/U6HTJAdX2UKGgGR7+8lY2bXpW4aAdLAmgIR0CkoL11W8yvdX2UKGgGR7/JYtg8bJfZaAdLA2gIR0CkoHlMAWBSdX2UKGgGR7/CINVinYQKaAdLAmgIR0CkoDv9tMwldX2UKGgGR7+m2E0zj3mFaAdLAWgIR0CkoEOpsGgSdX2UKGgGR7++tITXarWAaAdLAmgIR0CkoIkovzvrdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}