--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 base_model: openai/whisper-small model-index: - name: Whisper Small zh-HK - Alvin results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 zh-HK type: mozilla-foundation/common_voice_11_0 config: zh-HK split: test args: zh-HK metrics: - type: cer value: 10.11 name: Normalized CER --- # Whisper Small zh-HK - Alvin This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. This version has a lower CER (by 1%) compared to the previous one. ## Training and evaluation data For training, three datasets were used: - Common Voice 11 Canto Train Set - CantoMap: Winterstein, Grégoire, Tang, Carmen and Lai, Regine (2020) "CantoMap: a Hong Kong Cantonese MapTask Corpus", in Proceedings of The 12th Language Resources and Evaluation Conference, Marseille: European Language Resources Association, p. 2899-2906. - Cantonse-ASR: Yu, Tiezheng, Frieske, Rita, Xu, Peng, Cahyawijaya, Samuel, Yiu, Cheuk Tung, Lovenia, Holy, Dai, Wenliang, Barezi, Elham, Chen, Qifeng, Ma, Xiaojuan, Shi, Bertram, Fung, Pascale (2022) "Automatic Speech Recognition Datasets in Cantonese: A Survey and New Dataset", 2022. Link: https://arxiv.org/pdf/2201.02419.pdf ## Using the Model ``` import librosa import torch from transformers import WhisperForConditionalGeneration, WhisperProcessor y, sr = librosa.load('audio.mp3', sr=16000) MODEL_NAME = "alvanlii/whisper-small-cantonese" processor = WhisperProcessor.from_pretrained(MODEL_NAME) model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME) model.config.forced_decoder_ids = None model.config.suppress_tokens = [] model.config.use_cache = False processed_in = processor(y, sampling_rate=sr, return_tensors="pt") gout = model.generate( input_features=processed_in.input_features, output_scores=True, return_dict_in_generate=True ) transcription = processor.batch_decode(gout.sequences, skip_special_tokens=True)[0] print(transcription) ``` - Alternatively, you can use huggingface pipelines ``` from transformers import pipeline MODEL_NAME = "alvanlii/whisper-small-cantonese" lang = "zh" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") text = pipe(file)["text"] ``` ## Training Hyperparameters - learning_rate: 5e-5 - train_batch_size: 25 (on 2 GPUs) - eval_batch_size: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 25x2x2=100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 14000 - mixed_precision_training: Native AMP - augmentation: SpecAugment ## Training Results | Training Loss | Epoch | Step | Validation Loss | Normalized CER | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.4610 | 0.55 | 2000 | 0.3106 | 13.08 | | 0.3441 | 1.11 | 4000 | 0.2875 | 11.79 | | 0.3466 | 1.66 | 6000 | 0.2820 | 11.44 | | 0.2539 | 2.22 | 8000 | 0.2777 | 10.59 | | 0.2312 | 2.77 | 10000 | 0.2822 | 10.60 | | 0.1639 | 3.32 | 12000 | 0.2859 | 10.17 | | 0.1569 | 3.88 | 14000 | 0.2866 | 10.11 |