alvarobartt HF staff commited on
Commit
21bdf0a
1 Parent(s): 44de49a

Upload model

Browse files
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: span-marker
3
+ tags:
4
+ - span-marker
5
+ - token-classification
6
+ - ner
7
+ - named-entity-recognition
8
+ - generated_from_span_marker_trainer
9
+ metrics:
10
+ - precision
11
+ - recall
12
+ - f1
13
+ widget: []
14
+ pipeline_tag: token-classification
15
+ ---
16
+
17
+ # SpanMarker
18
+
19
+ This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition.
20
+
21
+ ## Model Details
22
+
23
+ ### Model Description
24
+ - **Model Type:** SpanMarker
25
+ <!-- - **Encoder:** [Unknown](https://huggingface.co/unknown) -->
26
+ - **Maximum Sequence Length:** 512 tokens
27
+ - **Maximum Entity Length:** 8 words
28
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
29
+ <!-- - **Language:** Unknown -->
30
+ <!-- - **License:** Unknown -->
31
+
32
+ ### Model Sources
33
+
34
+ - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
35
+ - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
36
+
37
+ ## Uses
38
+
39
+ ### Direct Use for Inference
40
+
41
+ ```python
42
+ from span_marker import SpanMarkerModel
43
+
44
+ # Download from the 🤗 Hub
45
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
46
+ # Run inference
47
+ entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
48
+ ```
49
+
50
+ ### Downstream Use
51
+ You can finetune this model on your own dataset.
52
+
53
+ <details><summary>Click to expand</summary>
54
+
55
+ ```python
56
+ from span_marker import SpanMarkerModel, Trainer
57
+
58
+ # Download from the 🤗 Hub
59
+ model = SpanMarkerModel.from_pretrained("span_marker_model_id")
60
+
61
+ # Specify a Dataset with "tokens" and "ner_tag" columns
62
+ dataset = load_dataset("conll2003") # For example CoNLL2003
63
+
64
+ # Initialize a Trainer using the pretrained model & dataset
65
+ trainer = Trainer(
66
+ model=model,
67
+ train_dataset=dataset["train"],
68
+ eval_dataset=dataset["validation"],
69
+ )
70
+ trainer.train()
71
+ trainer.save_model("span_marker_model_id-finetuned")
72
+ ```
73
+ </details>
74
+
75
+ <!--
76
+ ### Out-of-Scope Use
77
+
78
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
79
+ -->
80
+
81
+ <!--
82
+ ## Bias, Risks and Limitations
83
+
84
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
85
+ -->
86
+
87
+ <!--
88
+ ### Recommendations
89
+
90
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
91
+ -->
92
+
93
+ ## Training Details
94
+
95
+ ### Framework Versions
96
+ - Python: 3.10.12
97
+ - SpanMarker: 1.3.1.dev
98
+ - Transformers: 4.33.3
99
+ - PyTorch: 2.0.1+cu118
100
+ - Datasets: 2.14.5
101
+ - Tokenizers: 0.13.3
102
+
103
+ ## Citation
104
+
105
+ ### BibTeX
106
+ ```
107
+ @software{Aarsen_SpanMarker,
108
+ author = {Aarsen, Tom},
109
+ license = {Apache-2.0},
110
+ title = {{SpanMarker for Named Entity Recognition}},
111
+ url = {https://github.com/tomaarsen/SpanMarkerNER}
112
+ }
113
+ ```
114
+
115
+ <!--
116
+ ## Glossary
117
+
118
+ *Clearly define terms in order to be accessible across audiences.*
119
+ -->
120
+
121
+ <!--
122
+ ## Model Card Authors
123
+
124
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
125
+ -->
126
+
127
+ <!--
128
+ ## Model Card Contact
129
+
130
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
131
+ -->
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<end>": 119548,
3
+ "<start>": 119547
4
+ }
config.json ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/content/models/bert_base_multilingual_cased_ner_spanish/checkpoint-final",
3
+ "architectures": [
4
+ "SpanMarkerModel"
5
+ ],
6
+ "encoder": {
7
+ "_name_or_path": "bert-base-multilingual-cased",
8
+ "add_cross_attention": false,
9
+ "architectures": [
10
+ "BertForMaskedLM"
11
+ ],
12
+ "attention_probs_dropout_prob": 0.1,
13
+ "bad_words_ids": null,
14
+ "begin_suppress_tokens": null,
15
+ "bos_token_id": null,
16
+ "chunk_size_feed_forward": 0,
17
+ "classifier_dropout": null,
18
+ "cross_attention_hidden_size": null,
19
+ "decoder_start_token_id": null,
20
+ "directionality": "bidi",
21
+ "diversity_penalty": 0.0,
22
+ "do_sample": false,
23
+ "early_stopping": false,
24
+ "encoder_no_repeat_ngram_size": 0,
25
+ "eos_token_id": null,
26
+ "exponential_decay_length_penalty": null,
27
+ "finetuning_task": null,
28
+ "forced_bos_token_id": null,
29
+ "forced_eos_token_id": null,
30
+ "hidden_act": "gelu",
31
+ "hidden_dropout_prob": 0.1,
32
+ "hidden_size": 768,
33
+ "id2label": {
34
+ "0": "O",
35
+ "1": "B-PER",
36
+ "2": "I-PER",
37
+ "3": "B-ORG",
38
+ "4": "I-ORG",
39
+ "5": "B-LOC",
40
+ "6": "I-LOC"
41
+ },
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 3072,
44
+ "is_decoder": false,
45
+ "is_encoder_decoder": false,
46
+ "label2id": {
47
+ "B-LOC": 5,
48
+ "B-ORG": 3,
49
+ "B-PER": 1,
50
+ "I-LOC": 6,
51
+ "I-ORG": 4,
52
+ "I-PER": 2,
53
+ "O": 0
54
+ },
55
+ "layer_norm_eps": 1e-12,
56
+ "length_penalty": 1.0,
57
+ "max_length": 20,
58
+ "max_position_embeddings": 512,
59
+ "min_length": 0,
60
+ "model_type": "bert",
61
+ "no_repeat_ngram_size": 0,
62
+ "num_attention_heads": 12,
63
+ "num_beam_groups": 1,
64
+ "num_beams": 1,
65
+ "num_hidden_layers": 12,
66
+ "num_return_sequences": 1,
67
+ "output_attentions": false,
68
+ "output_hidden_states": false,
69
+ "output_scores": false,
70
+ "pad_token_id": 0,
71
+ "pooler_fc_size": 768,
72
+ "pooler_num_attention_heads": 12,
73
+ "pooler_num_fc_layers": 3,
74
+ "pooler_size_per_head": 128,
75
+ "pooler_type": "first_token_transform",
76
+ "position_embedding_type": "absolute",
77
+ "prefix": null,
78
+ "problem_type": null,
79
+ "pruned_heads": {},
80
+ "remove_invalid_values": false,
81
+ "repetition_penalty": 1.0,
82
+ "return_dict": true,
83
+ "return_dict_in_generate": false,
84
+ "sep_token_id": null,
85
+ "suppress_tokens": null,
86
+ "task_specific_params": null,
87
+ "temperature": 1.0,
88
+ "tf_legacy_loss": false,
89
+ "tie_encoder_decoder": false,
90
+ "tie_word_embeddings": true,
91
+ "tokenizer_class": null,
92
+ "top_k": 50,
93
+ "top_p": 1.0,
94
+ "torch_dtype": null,
95
+ "torchscript": false,
96
+ "transformers_version": "4.33.3",
97
+ "type_vocab_size": 2,
98
+ "typical_p": 1.0,
99
+ "use_bfloat16": false,
100
+ "use_cache": true,
101
+ "vocab_size": 119552
102
+ },
103
+ "entity_max_length": 8,
104
+ "id2label": {
105
+ "0": "O",
106
+ "1": "LOC",
107
+ "2": "ORG",
108
+ "3": "PER"
109
+ },
110
+ "id2reduced_id": {
111
+ "0": 0,
112
+ "1": 3,
113
+ "2": 3,
114
+ "3": 2,
115
+ "4": 2,
116
+ "5": 1,
117
+ "6": 1
118
+ },
119
+ "label2id": {
120
+ "LOC": 1,
121
+ "O": 0,
122
+ "ORG": 2,
123
+ "PER": 3
124
+ },
125
+ "marker_max_length": 256,
126
+ "max_next_context": null,
127
+ "max_prev_context": null,
128
+ "model_max_length": 512,
129
+ "model_max_length_default": 512,
130
+ "model_type": "span-marker",
131
+ "span_marker_version": "1.3.1.dev",
132
+ "torch_dtype": "float32",
133
+ "trained_with_document_context": false,
134
+ "transformers_version": "4.33.3",
135
+ "vocab_size": 119552
136
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4e7c1d62b75126a17a37e97e3283da0e79c87f7f2eacc4b715f9ef34d8fa5fa
3
+ size 711519857
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": true,
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "[CLS]",
5
+ "do_lower_case": false,
6
+ "mask_token": "[MASK]",
7
+ "model_max_length": 512,
8
+ "pad_token": "[PAD]",
9
+ "sep_token": "[SEP]",
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff