Alvaro Bartolome
commited on
Commit
•
9367b3d
1
Parent(s):
5455d5e
update model card README.md
Browse files
README.md
CHANGED
@@ -24,16 +24,16 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
-
value: 0.
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
-
value: 0.
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
-
value: 0.
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
-
value: 0.
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
-
- Loss: 0.
|
47 |
-
- Precision: 0.
|
48 |
-
- Recall: 0.
|
49 |
-
- F1: 0.
|
50 |
-
- Accuracy: 0.
|
51 |
|
52 |
## Model description
|
53 |
|
@@ -66,29 +66,34 @@ More information needed
|
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
-
- learning_rate:
|
70 |
- train_batch_size: 8
|
71 |
- eval_batch_size: 8
|
72 |
- seed: 2147483647
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
-
- num_epochs:
|
76 |
- mixed_precision_training: Native AMP
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
-
| Training Loss | Epoch | Step
|
81 |
-
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
|
89 |
### Framework versions
|
90 |
|
91 |
-
- Transformers 4.
|
92 |
- Pytorch 2.0.0+cu118
|
93 |
- Datasets 2.11.0
|
94 |
- Tokenizers 0.13.3
|
|
|
24 |
metrics:
|
25 |
- name: Precision
|
26 |
type: precision
|
27 |
+
value: 0.9306692773228907
|
28 |
- name: Recall
|
29 |
type: recall
|
30 |
+
value: 0.9381841019199713
|
31 |
- name: F1
|
32 |
type: f1
|
33 |
+
value: 0.9344115807345187
|
34 |
- name: Accuracy
|
35 |
type: accuracy
|
36 |
+
value: 0.9832666156472597
|
37 |
---
|
38 |
|
39 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
43 |
|
44 |
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
|
45 |
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.1183
|
47 |
+
- Precision: 0.9307
|
48 |
+
- Recall: 0.9382
|
49 |
+
- F1: 0.9344
|
50 |
+
- Accuracy: 0.9833
|
51 |
|
52 |
## Model description
|
53 |
|
|
|
66 |
### Training hyperparameters
|
67 |
|
68 |
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
- train_batch_size: 8
|
71 |
- eval_batch_size: 8
|
72 |
- seed: 2147483647
|
73 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
- mixed_precision_training: Native AMP
|
77 |
|
78 |
### Training results
|
79 |
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
82 |
+
| 0.1081 | 1.0 | 1756 | 0.0963 | 0.8947 | 0.8982 | 0.8964 | 0.9742 |
|
83 |
+
| 0.0518 | 2.0 | 3512 | 0.0780 | 0.9219 | 0.9182 | 0.9200 | 0.9803 |
|
84 |
+
| 0.0348 | 3.0 | 5268 | 0.0833 | 0.9258 | 0.9271 | 0.9264 | 0.9819 |
|
85 |
+
| 0.0268 | 4.0 | 7024 | 0.0900 | 0.9152 | 0.9241 | 0.9196 | 0.9805 |
|
86 |
+
| 0.0167 | 5.0 | 8780 | 0.0929 | 0.9225 | 0.9320 | 0.9272 | 0.9822 |
|
87 |
+
| 0.0071 | 6.0 | 10536 | 0.1119 | 0.9229 | 0.9270 | 0.9249 | 0.9816 |
|
88 |
+
| 0.0056 | 7.0 | 12292 | 0.1073 | 0.9286 | 0.9366 | 0.9326 | 0.9832 |
|
89 |
+
| 0.0021 | 8.0 | 14048 | 0.1194 | 0.9285 | 0.9350 | 0.9318 | 0.9829 |
|
90 |
+
| 0.0019 | 9.0 | 15804 | 0.1156 | 0.9318 | 0.9376 | 0.9347 | 0.9833 |
|
91 |
+
| 0.0011 | 10.0 | 17560 | 0.1183 | 0.9307 | 0.9382 | 0.9344 | 0.9833 |
|
92 |
|
93 |
|
94 |
### Framework versions
|
95 |
|
96 |
+
- Transformers 4.27.4
|
97 |
- Pytorch 2.0.0+cu118
|
98 |
- Datasets 2.11.0
|
99 |
- Tokenizers 0.13.3
|