--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.9306692773228907 - name: Recall type: recall value: 0.9381841019199713 - name: F1 type: f1 value: 0.9344115807345187 - name: Accuracy type: accuracy value: 0.9832666156472597 --- # distilbert-base-cased-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1183 - Precision: 0.9307 - Recall: 0.9382 - F1: 0.9344 - Accuracy: 0.9833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2147483647 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1081 | 1.0 | 1756 | 0.0963 | 0.8947 | 0.8982 | 0.8964 | 0.9742 | | 0.0518 | 2.0 | 3512 | 0.0780 | 0.9219 | 0.9182 | 0.9200 | 0.9803 | | 0.0348 | 3.0 | 5268 | 0.0833 | 0.9258 | 0.9271 | 0.9264 | 0.9819 | | 0.0268 | 4.0 | 7024 | 0.0900 | 0.9152 | 0.9241 | 0.9196 | 0.9805 | | 0.0167 | 5.0 | 8780 | 0.0929 | 0.9225 | 0.9320 | 0.9272 | 0.9822 | | 0.0071 | 6.0 | 10536 | 0.1119 | 0.9229 | 0.9270 | 0.9249 | 0.9816 | | 0.0056 | 7.0 | 12292 | 0.1073 | 0.9286 | 0.9366 | 0.9326 | 0.9832 | | 0.0021 | 8.0 | 14048 | 0.1194 | 0.9285 | 0.9350 | 0.9318 | 0.9829 | | 0.0019 | 9.0 | 15804 | 0.1156 | 0.9318 | 0.9376 | 0.9347 | 0.9833 | | 0.0011 | 10.0 | 17560 | 0.1183 | 0.9307 | 0.9382 | 0.9344 | 0.9833 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3