--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-cased-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.932077342588002 - name: Recall type: recall value: 0.9491753618310333 - name: F1 type: f1 value: 0.940548653381139 - name: Accuracy type: accuracy value: 0.984782480720551 --- # distilbert-base-cased-ner This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1088 - Precision: 0.9321 - Recall: 0.9492 - F1: 0.9405 - Accuracy: 0.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 2147483647 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1015 | 1.0 | 1756 | 0.1001 | 0.8858 | 0.9167 | 0.9010 | 0.9740 | | 0.049 | 2.0 | 3512 | 0.0803 | 0.8993 | 0.9273 | 0.9131 | 0.9798 | | 0.0327 | 3.0 | 5268 | 0.0794 | 0.9199 | 0.9350 | 0.9274 | 0.9821 | | 0.0237 | 4.0 | 7024 | 0.0880 | 0.9050 | 0.9344 | 0.9194 | 0.9813 | | 0.0131 | 5.0 | 8780 | 0.0849 | 0.9178 | 0.9446 | 0.9310 | 0.9837 | | 0.0073 | 6.0 | 10536 | 0.0975 | 0.9166 | 0.9446 | 0.9304 | 0.9838 | | 0.0044 | 7.0 | 12292 | 0.0965 | 0.9267 | 0.9475 | 0.9370 | 0.9842 | | 0.0015 | 8.0 | 14048 | 0.1075 | 0.9273 | 0.9463 | 0.9367 | 0.9843 | | 0.0011 | 9.0 | 15804 | 0.1089 | 0.9317 | 0.9480 | 0.9398 | 0.9847 | | 0.0006 | 10.0 | 17560 | 0.1088 | 0.9321 | 0.9492 | 0.9405 | 0.9848 | ### Framework versions - Transformers 4.27.4 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3