{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b6dca5740>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681668570267061774, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACTjzD6ZSya/N9WxPokoKz9zjVO+Ci50Pwyd677bhAe/Y5M8PkT0Br95CB2/9NS5vbRoGT/m/8C8/G8VP/RM4r9OlZQ/R14Vv0nDiL7AUBDAoTsIv8+cYD2Nz5s/03zxvjknfr+mJxM/31fyvxCRiz9rfRG+BS99vpCt+j4p6wU/n+p4Pk4KQj5FSsU+AI00vy5u3j6wBDK+T25HvVVgjj+gr509SZ2uvkPKbT4Wx62+tz5cP9NeRb/2CcM+n2CVPlowB7+lnO08UJ3DPdqVFb85J36/picTP5I2Bz8QkYs/l7fEPpJUIT/nqbI+UE1iP/n2Gr8Sq38/zJ+PPki8br+OFdW9olBpPxD28j0YRGG/oCSyPUjkzD+wt6k9KlSWPx0ZMz9YgPI/yRguP2D6fb5TrU6+WviFvFH0dD8XhfI+OSd+v6YnEz/fV/K/EJGLP7j60b0iKqy+dmrwPsTJYT7f8Jo9zVJMPtVcUD/8hwq/xfUvP70s6Lz0EHI/oSWpPg45d78xOui/gCUSv3Wl6b+lojI+IJxZv4aaXz9S1S8/rf8Gv4z3qDxjsX+/GNZ7vxvugD9Mrd6/kjYHP6zIar+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADYjvY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEWrivQAAAACw+/K/AAAAACKo3D0AAAAAl5b0PwAAAACzf2k9AAAAAJWS8D8AAAAACRQPvQAAAABiTt2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6iWXNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAziZT0AAAAA0QfyvwAAAAB8qzk8AAAAAHUz5z8AAAAAk5TmPQAAAADJsuI/AAAAADtrC74AAAAA/MPuvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACPN9bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBrpAc+AAAAADot278AAAAAv8YDvgAAAABt3Oo/AAAAAMdyHr0AAAAALs/jPwAAAAAyEdU8AAAAAITu2b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmjyG2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACApl3jvQAAAACSSvC/AAAAAO9ZuLwAAAAAhiztPwAAAADm9RC+AAAAAGoF/T8AAAAACFI9PQAAAAC+gvK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKGBr/SYw7GMAWyUTegDjAF0lEdAqgPSYkVvdnV9lChoBkdAn2WhlcyFf2gHTegDaAhHQKoFTA31jAl1fZQoaAZHQJ2zkZJkGzNoB03oA2gIR0CqDcwnYxtYdX2UKGgGR0Cgy/Qkona4aAdN6ANoCEdAqg5ukBS1mnV9lChoBkdAobQa1Z1V52gHTegDaAhHQKoQaqaPS2J1fZQoaAZHQKEpytlI3BJoB03oA2gIR0CqEo5U96kZdX2UKGgGR0CgiE00Nz8xaAdN6ANoCEdAqhz/CXQdCHV9lChoBkdAoQd59kSVW2gHTegDaAhHQKodfiYsunN1fZQoaAZHQKFRsuscQy1oB03oA2gIR0CqHtmEf1YhdX2UKGgGR0CgPn9l/YrbaAdN6ANoCEdAqiBYQBgeBHV9lChoBkdAm8cxX0XgtWgHTegDaAhHQKoo+q5sj3V1fZQoaAZHQJ3TrltCRfZoB03oA2gIR0CqKWrv1DjSdX2UKGgGR0CgsHiWNWELaAdN6ANoCEdAqiq4ntv4unV9lChoBkdAmNV/vSc9XGgHTegDaAhHQKosVpnHvMN1fZQoaAZHQJ1Y5T0g8r9oB03oA2gIR0CqOAALZzxPdX2UKGgGR0CgiK/NA1NyaAdN6ANoCEdAqjh2kpI+XHV9lChoBkdAkAzDW9US7GgHTegDaAhHQKo50gfU4Jh1fZQoaAZHQJ5YIvVVghNoB03oA2gIR0CqO2sO5J9RdX2UKGgGR0CclpQQ+UyIaAdN6ANoCEdAqkRBgLJCB3V9lChoBkdAm/IRXwLE1mgHTegDaAhHQKpEvI91U2l1fZQoaAZHQJl7icBltj1oB03oA2gIR0CqRiDrqt5ldX2UKGgGR0Cey5+H8CPqaAdN6ANoCEdAqkez3TNMXnV9lChoBkdAoEj/mvGIbmgHTegDaAhHQKpT2vA44qB1fZQoaAZHQJr8MMAmzB1oB03oA2gIR0CqVFDa4+bFdX2UKGgGR0CcUtJiiItUaAdN6ANoCEdAqlW0HjZL7HV9lChoBkdAnDVStFKChGgHTegDaAhHQKpXMSW7e2x1fZQoaAZHQJvOoKCxu89oB03oA2gIR0CqX+eAEt/XdX2UKGgGR0Ces13I+4b0aAdN6ANoCEdAqmBeJBPbf3V9lChoBkdAnnz58jRlYmgHTegDaAhHQKphukbgjyF1fZQoaAZHQJm+ILF4s3BoB03oA2gIR0CqYznZ00WNdX2UKGgGR0CfNQVDKHO9aAdN6ANoCEdAqm3kOPNmlXV9lChoBkdAnVRAfyPMjmgHTegDaAhHQKpumcc2itd1fZQoaAZHQJ9dakhzNlloB03oA2gIR0CqcKyBshxHdX2UKGgGR0Ccd1fpD/lyaAdN6ANoCEdAqnJmZLIxQHV9lChoBkdAntYCjpLVWmgHTegDaAhHQKp7HK+zt1J1fZQoaAZHQKEhwBdUsFtoB03oA2gIR0Cqe5pXIU8FdX2UKGgGR0CgslsQd0aIaAdN6ANoCEdAqnz0jPfKp3V9lChoBkdAoQWEL+glGGgHTegDaAhHQKp+bsC1Z1V1fZQoaAZHQKBULGdZq21oB03oA2gIR0Cqh9Yzi0fHdX2UKGgGR0Ce+Hn3ta6jaAdNzwNoCEdAqogTIikftHV9lChoBkdAn1QvECNjsmgHTegDaAhHQKqKd5qM3qB1fZQoaAZHQKBBwI0qH45oB03oA2gIR0CqjLbN8ma6dX2UKGgGR0Cgf8uuieunaAdN6ANoCEdAqpYz2criEXV9lChoBkdAoABq6MBIWmgHTegDaAhHQKqWXRa5f+l1fZQoaAZHQJqL87HQyARoB03oA2gIR0Cql/9US7GvdX2UKGgGR0CgSUO9OARTaAdN6ANoCEdAqpl7qB3A23V9lChoBkdAoUL+afBeomgHTegDaAhHQKqiCmAskIJ1fZQoaAZHQJwKSVX3g1poB03oA2gIR0CqojPoV2zOdX2UKGgGR0ChtIU/4ZdfaAdN6ANoCEdAqqQpgy/KyXV9lChoBkdAoeo5Lsa86GgHTegDaAhHQKqmQ+JP69F1fZQoaAZHQKE7Ice8wpRoB03oA2gIR0CqsUvmozeodX2UKGgGR0CgZYmJemelaAdN6ANoCEdAqrF3jMmnfnV9lChoBkdAoGFs50bLlmgHTegDaAhHQKqzE4axX4l1fZQoaAZHQKA9/cry1/loB03oA2gIR0CqtJHvDxb0dX2UKGgGR0CfRwY1He7+aAdN6ANoCEdAqr00sUZeiXV9lChoBkdAmTO1Ed/8VGgHTegDaAhHQKq9ZR+jM3Z1fZQoaAZHQJen95KODJ5oB03oA2gIR0Cqvxl+3H7xdX2UKGgGR0CafKguRLbpaAdN6ANoCEdAqsCY1WKdhHV9lChoBkdAmqKHPRiPQ2gHTegDaAhHQKrMyaWom5V1fZQoaAZHQJhDnHn2ZiNoB03oA2gIR0CqzPY1xbSrdX2UKGgGR0Cddv4UeuFIaAdN6ANoCEdAqs6TGecx03V9lChoBkdAmZTWkWRA8mgHTegDaAhHQKrQC2kzoEB1fZQoaAZHQKAZ/8xbjcVoB03oA2gIR0Cq2JB4lhPTdX2UKGgGR0CfH6VlwtJ4aAdN6ANoCEdAqti5tpEhJXV9lChoBkdAoE2++IuXeGgHTegDaAhHQKraXTEzfrN1fZQoaAZHQJycZWsA/9poB03oA2gIR0Cq29y2Yv38dX2UKGgGR0CgL/mW+oLoaAdN6ANoCEdAqubc6V+qi3V9lChoBkdAkAWcRxtHhGgHTegDaAhHQKrnIYxcmjV1fZQoaAZHQKGSDZkkKNRoB03oA2gIR0Cq6Z+gDifhdX2UKGgGR0CgGm1uivgWaAdN6ANoCEdAquslLFn7HnV9lChoBkdAn/qYR28qWmgHTegDaAhHQKrz4iKR+0B1fZQoaAZHQJ/h6CaqjrRoB03oA2gIR0Cq9AzXJ5midX2UKGgGR0CgpXN8ma6SaAdN6ANoCEdAqvW1VinYQXV9lChoBkdAocpZSWJJoWgHTegDaAhHQKr3NLh73PB1fZQoaAZHQJ3fZH+ZPVNoB03oA2gIR0CrAXCzTnaGdX2UKGgGR0Ccx4M9bHIZaAdN6ANoCEdAqwGvIIWxhXV9lChoBkdAnKDIcJdB0WgHTegDaAhHQKsEMVt4zJp1fZQoaAZHQJa9TJJXhfloB03oA2gIR0CrBn5TIeYEdX2UKGgGR0CgTQcsDnvEaAdN6ANoCEdAqw/ApvxYrHV9lChoBkdAkwLiQo1DSmgHTegDaAhHQKsP65WilBR1fZQoaAZHQJqcY70WdmRoB03oA2gIR0CrEZgEdNnHdX2UKGgGR0Cgo0gZsKsuaAdN6ANoCEdAqxMY64lQdnV9lChoBkdAoKhQlhPTHGgHTegDaAhHQKsbz33YcvN1fZQoaAZHQKFanU3n6mBoB03oA2gIR0CrHBELQXyidX2UKGgGR0Cg+4Ni6QNkaAdN6ANoCEdAqx537FbV0HV9lChoBkdAoPs+DaoMrmgHTegDaAhHQKsgorlNlAh1fZQoaAZHQKGE6hQFcIJoB03oA2gIR0CrKz+nAIppdX2UKGgGR0ChGwjbSJCTaAdN6ANoCEdAqytpzYEns3V9lChoBkdAodGmN3np0WgHTegDaAhHQKstCc4o7V91fZQoaAZHQKGLy+qzZ6FoB03oA2gIR0CrLoBDPWxydX2UKGgGR0ChzFhy0a60aAdN6ANoCEdAqzct1ZDArXV9lChoBkdAoShpMvh60WgHTegDaAhHQKs3V6Ggzxh1fZQoaAZHQKDVOcKgIyFoB03oA2gIR0CrOP42Kl54dX2UKGgGR0Ce0+cf/3nIaAdN6ANoCEdAqzrbm0VrRHV9lChoBkdAoWxC4MF2V2gHTegDaAhHQKtGkQ2dd3V1fZQoaAZHQKDyH9rGipNoB03oA2gIR0CrRr14Pf8/dX2UKGgGR0CTB9IAfdRBaAdN6ANoCEdAq0huWldka3V9lChoBkdAoKWd61LJ0WgHTegDaAhHQKtJ54Pf8/F1fZQoaAZHQKCvm4Ajps5oB03oA2gIR0CrUo4/mknDdX2UKGgGR0CgcnTLGJemaAdN6ANoCEdAq1K4ACGN73VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}