|
--- |
|
tags: |
|
- autotrain |
|
- vision |
|
- image-classification |
|
datasets: |
|
- lewtun/dog_food |
|
widget: |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg |
|
example_title: Tiger |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg |
|
example_title: Teapot |
|
- src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg |
|
example_title: Palace |
|
library_name: transformers |
|
co2_eq_emissions: |
|
emissions: 6.799888815236616 |
|
eval_info: |
|
col_mapping: test |
|
model-index: |
|
- name: NimaBoscarino/dog_food |
|
results: |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
name: lewtun/dog_food |
|
type: lewtun/dog_food |
|
config: lewtun--dog_food |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 1.0 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 1.0 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 1.0 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 1.0 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 1.0 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 1.0 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 1.0 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 1.0 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 1.0 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 1.0 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 1.848173087637406e-05 |
|
verified: true |
|
--- |
|
|
|
# Model Trained Using AutoTrain |
|
|
|
- Problem type: Multi-class Classification |
|
- Model ID: 1647758504 |
|
- CO2 Emissions (in grams): 6.7999 |
|
|
|
## Validation Metrics |
|
|
|
- Loss: 0.001 |
|
- Accuracy: 1.000 |
|
- Macro F1: 1.000 |
|
- Micro F1: 1.000 |
|
- Weighted F1: 1.000 |
|
- Macro Precision: 1.000 |
|
- Micro Precision: 1.000 |
|
- Weighted Precision: 1.000 |
|
- Macro Recall: 1.000 |
|
- Micro Recall: 1.000 |
|
- Weighted Recall: 1.000 |