aman-augurs commited on
Commit
601b0b5
1 Parent(s): 8364258

End of training

Browse files
Files changed (1) hide show
  1. README.md +66 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.1
4
+ base_model: meta-llama/Llama-3.1-8B
5
+ tags:
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: llama3.1_8b_lawyer_finetuned
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # llama3.1_8b_lawyer_finetuned
16
+
17
+ This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.0646
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 6
40
+ - eval_batch_size: 6
41
+ - seed: 42
42
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
43
+ - lr_scheduler_type: linear
44
+ - num_epochs: 3
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss |
50
+ |:-------------:|:------:|:----:|:---------------:|
51
+ | 0.1181 | 0.3794 | 500 | 0.1088 |
52
+ | 0.0884 | 0.7587 | 1000 | 0.0817 |
53
+ | 0.0792 | 1.1381 | 1500 | 0.0749 |
54
+ | 0.0739 | 1.5175 | 2000 | 0.0710 |
55
+ | 0.0705 | 1.8968 | 2500 | 0.0678 |
56
+ | 0.0623 | 2.2762 | 3000 | 0.0661 |
57
+ | 0.062 | 2.6555 | 3500 | 0.0646 |
58
+
59
+
60
+ ### Framework versions
61
+
62
+ - PEFT 0.13.2
63
+ - Transformers 4.46.3
64
+ - Pytorch 2.5.1+cu121
65
+ - Datasets 3.2.0
66
+ - Tokenizers 0.20.3