amanpatkar
commited on
update
Browse files
README.md
CHANGED
@@ -1,92 +1,92 @@
|
|
1 |
-
---
|
2 |
-
base_model: distilbert-base-cased
|
3 |
-
datasets:
|
4 |
-
- conll2003
|
5 |
-
license: apache-2.0
|
6 |
-
metrics:
|
7 |
-
- precision
|
8 |
-
- recall
|
9 |
-
- f1
|
10 |
-
- accuracy
|
11 |
-
tags:
|
12 |
-
- generated_from_trainer
|
13 |
-
model-index:
|
14 |
-
- name: distilbert-finetuned-ner
|
15 |
-
results:
|
16 |
-
- task:
|
17 |
-
type: token-classification
|
18 |
-
name: Token Classification
|
19 |
-
dataset:
|
20 |
-
name: conll2003
|
21 |
-
type: conll2003
|
22 |
-
config: conll2003
|
23 |
-
split: validation
|
24 |
-
args: conll2003
|
25 |
-
metrics:
|
26 |
-
- type: precision
|
27 |
-
value: 1.0
|
28 |
-
name: Precision
|
29 |
-
- type: recall
|
30 |
-
value: 1.0
|
31 |
-
name: Recall
|
32 |
-
- type: f1
|
33 |
-
value: 1.0
|
34 |
-
name: F1
|
35 |
-
- type: accuracy
|
36 |
-
value: 1.0
|
37 |
-
name: Accuracy
|
38 |
-
---
|
39 |
-
|
40 |
-
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
-
should probably proofread and complete it, then remove this comment. -->
|
42 |
-
|
43 |
-
# distilbert-finetuned-ner
|
44 |
-
|
45 |
-
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
|
46 |
-
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.0711
|
48 |
-
- Precision: 1.0
|
49 |
-
- Recall: 1.0
|
50 |
-
- F1: 1.0
|
51 |
-
- Accuracy: 1.0
|
52 |
-
|
53 |
-
## Model description
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
## Intended uses & limitations
|
58 |
-
|
59 |
-
More information needed
|
60 |
-
|
61 |
-
## Training and evaluation data
|
62 |
-
|
63 |
-
More information needed
|
64 |
-
|
65 |
-
## Training procedure
|
66 |
-
|
67 |
-
### Training hyperparameters
|
68 |
-
|
69 |
-
The following hyperparameters were used during training:
|
70 |
-
- learning_rate: 2e-05
|
71 |
-
- train_batch_size: 8
|
72 |
-
- eval_batch_size: 8
|
73 |
-
- seed: 42
|
74 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
-
- lr_scheduler_type: linear
|
76 |
-
- num_epochs: 3
|
77 |
-
|
78 |
-
### Training results
|
79 |
-
|
80 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
-
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
|
82 |
-
| 0.0908 | 1.0 | 1756 | 0.0887 | 1.0 | 1.0 | 1.0 | 1.0 |
|
83 |
-
| 0.0467 | 2.0 | 3512 | 0.0713 | 1.0 | 1.0 | 1.0 | 1.0 |
|
84 |
-
| 0.0276 | 3.0 | 5268 | 0.0711 | 1.0 | 1.0 | 1.0 | 1.0 |
|
85 |
-
|
86 |
-
|
87 |
-
### Framework versions
|
88 |
-
|
89 |
-
- Transformers 4.41.2
|
90 |
-
- Pytorch 2.3.1
|
91 |
-
- Datasets 2.20.0
|
92 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
base_model: distilbert-base-cased
|
3 |
+
datasets:
|
4 |
+
- conll2003
|
5 |
+
license: apache-2.0
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
tags:
|
12 |
+
- generated_from_trainer
|
13 |
+
model-index:
|
14 |
+
- name: distilbert-finetuned-ner
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: token-classification
|
18 |
+
name: Token Classification
|
19 |
+
dataset:
|
20 |
+
name: conll2003
|
21 |
+
type: conll2003
|
22 |
+
config: conll2003
|
23 |
+
split: validation
|
24 |
+
args: conll2003
|
25 |
+
metrics:
|
26 |
+
- type: precision
|
27 |
+
value: 1.0
|
28 |
+
name: Precision
|
29 |
+
- type: recall
|
30 |
+
value: 1.0
|
31 |
+
name: Recall
|
32 |
+
- type: f1
|
33 |
+
value: 1.0
|
34 |
+
name: F1
|
35 |
+
- type: accuracy
|
36 |
+
value: 1.0
|
37 |
+
name: Accuracy
|
38 |
+
---
|
39 |
+
|
40 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
41 |
+
should probably proofread and complete it, then remove this comment. -->
|
42 |
+
|
43 |
+
# distilbert-finetuned-ner
|
44 |
+
|
45 |
+
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
|
46 |
+
It achieves the following results on the evaluation set:
|
47 |
+
- Loss: 0.0711
|
48 |
+
- Precision: 1.0
|
49 |
+
- Recall: 1.0
|
50 |
+
- F1: 1.0
|
51 |
+
- Accuracy: 1.0
|
52 |
+
|
53 |
+
## Model description
|
54 |
+
|
55 |
+
The distilbert-finetuned-ner model is designed for Named Entity Recognition (NER) tasks. It is based on the DistilBERT architecture, which is a smaller, faster, and lighter version of BERT. DistilBERT retains 97% of BERT's language understanding while being 60% faster and 40% smaller, making it efficient for deployment in production systems.
|
56 |
+
|
57 |
+
## Intended uses & limitations
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training and evaluation data
|
62 |
+
|
63 |
+
More information needed
|
64 |
+
|
65 |
+
## Training procedure
|
66 |
+
|
67 |
+
### Training hyperparameters
|
68 |
+
|
69 |
+
The following hyperparameters were used during training:
|
70 |
+
- learning_rate: 2e-05
|
71 |
+
- train_batch_size: 8
|
72 |
+
- eval_batch_size: 8
|
73 |
+
- seed: 42
|
74 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
+
- lr_scheduler_type: linear
|
76 |
+
- num_epochs: 3
|
77 |
+
|
78 |
+
### Training results
|
79 |
+
|
80 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
81 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
|
82 |
+
| 0.0908 | 1.0 | 1756 | 0.0887 | 1.0 | 1.0 | 1.0 | 1.0 |
|
83 |
+
| 0.0467 | 2.0 | 3512 | 0.0713 | 1.0 | 1.0 | 1.0 | 1.0 |
|
84 |
+
| 0.0276 | 3.0 | 5268 | 0.0711 | 1.0 | 1.0 | 1.0 | 1.0 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.41.2
|
90 |
+
- Pytorch 2.3.1
|
91 |
+
- Datasets 2.20.0
|
92 |
+
- Tokenizers 0.19.1
|