amanpatkar commited on
Commit
8119227
1 Parent(s): bca3f7d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +130 -92
README.md CHANGED
@@ -1,92 +1,130 @@
1
- ---
2
- base_model: distilbert-base-cased
3
- datasets:
4
- - conll2003
5
- license: apache-2.0
6
- metrics:
7
- - precision
8
- - recall
9
- - f1
10
- - accuracy
11
- tags:
12
- - generated_from_trainer
13
- model-index:
14
- - name: distilbert-finetuned-ner
15
- results:
16
- - task:
17
- type: token-classification
18
- name: Token Classification
19
- dataset:
20
- name: conll2003
21
- type: conll2003
22
- config: conll2003
23
- split: validation
24
- args: conll2003
25
- metrics:
26
- - type: precision
27
- value: 1.0
28
- name: Precision
29
- - type: recall
30
- value: 1.0
31
- name: Recall
32
- - type: f1
33
- value: 1.0
34
- name: F1
35
- - type: accuracy
36
- value: 1.0
37
- name: Accuracy
38
- ---
39
-
40
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
- should probably proofread and complete it, then remove this comment. -->
42
-
43
- # distilbert-finetuned-ner
44
-
45
- This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
46
- It achieves the following results on the evaluation set:
47
- - Loss: 0.0736
48
- - Precision: 1.0
49
- - Recall: 1.0
50
- - F1: 1.0
51
- - Accuracy: 1.0
52
-
53
- ## Model description
54
-
55
- More information needed
56
-
57
- ## Intended uses & limitations
58
-
59
- More information needed
60
-
61
- ## Training and evaluation data
62
-
63
- More information needed
64
-
65
- ## Training procedure
66
-
67
- ### Training hyperparameters
68
-
69
- The following hyperparameters were used during training:
70
- - learning_rate: 2e-05
71
- - train_batch_size: 8
72
- - eval_batch_size: 8
73
- - seed: 42
74
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
- - lr_scheduler_type: linear
76
- - num_epochs: 3
77
-
78
- ### Training results
79
-
80
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
- |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
82
- | 0.0911 | 1.0 | 1756 | 0.0875 | 1.0 | 1.0 | 1.0 | 1.0 |
83
- | 0.0469 | 2.0 | 3512 | 0.0736 | 1.0 | 1.0 | 1.0 | 1.0 |
84
- | 0.0284 | 3.0 | 5268 | 0.0736 | 1.0 | 1.0 | 1.0 | 1.0 |
85
-
86
-
87
- ### Framework versions
88
-
89
- - Transformers 4.41.2
90
- - Pytorch 2.3.1
91
- - Datasets 2.20.0
92
- - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: distilbert-base-cased
3
+ datasets:
4
+ - conll2003
5
+ license: mit
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ tags:
12
+ - generated_from_trainer
13
+ model-index:
14
+ - name: distilbert-finetuned-ner
15
+ results:
16
+ - task:
17
+ type: token-classification
18
+ name: Token Classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ config: conll2003
23
+ split: validation
24
+ args: conll2003
25
+ metrics:
26
+ - type: precision
27
+ value: 1
28
+ name: Precision
29
+ - type: recall
30
+ value: 1
31
+ name: Recall
32
+ - type: f1
33
+ value: 1
34
+ name: F1
35
+ - type: accuracy
36
+ value: 1
37
+ name: Accuracy
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # distilbert-finetuned-ner
44
+
45
+ This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the conll2003 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.0711
48
+ - Precision: 1.0
49
+ - Recall: 1.0
50
+ - F1: 1.0
51
+ - Accuracy: 1.0
52
+
53
+ ## Model description
54
+
55
+ The distilbert-finetuned-ner model is designed for Named Entity Recognition (NER) tasks. It is based on the DistilBERT architecture, which is a smaller, faster, and lighter version of BERT. DistilBERT retains 97% of BERT's language understanding while being 60% faster and 40% smaller, making it efficient for deployment in production systems.
56
+
57
+ ## Intended Uses & Limitations
58
+
59
+ #### How to use
60
+
61
+ You can use this model with Transformers *pipeline* for NER.
62
+
63
+ ```python
64
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
65
+ from transformers import pipeline
66
+
67
+ tokenizer = AutoTokenizer.from_pretrained("amanpatkar/distilbert-finetuned-ner")
68
+ model = AutoModelForTokenClassification.from_pretrained("amanpatkar/distilbert-finetuned-ner")
69
+
70
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
71
+ example = "My name is Aman Patkar and I live in Gurugram, India."
72
+
73
+ ner_results = nlp(example)
74
+ print(ner_results)
75
+ ```
76
+
77
+ ### Intended Uses
78
+ - Named Entity Recognition (NER): Extracting entities such as names, locations, organizations, and miscellaneous entities from text.
79
+ - Information Extraction: Automatically identifying and classifying key information in documents.
80
+ - Text Preprocessing: Enhancing text preprocessing for downstream tasks like sentiment analysis and text summarization.
81
+
82
+ ### limitations
83
+ - Domain Specificity: The model is trained on the CoNLL-2003 dataset, which primarily consists of newswire data. Performance may degrade on text from different domains.
84
+ - Language Limitation: This model is trained on English text. It may not perform well on text in other languages.
85
+ - Precision in Complex Sentences: While the model performs well on standard sentences, complex sentence structures or ambiguous contexts might pose challenges.
86
+
87
+
88
+ ## Training and evaluation data
89
+
90
+ The model is fine-tuned on the CoNLL-2003 dataset, a widely-used dataset for training and evaluating NER systems. The dataset includes four types of named entities: Persons (PER), Organizations (ORG), Locations (LOC), and Miscellaneous (MISC).
91
+ Abbreviation|Description
92
+ -|-
93
+ O|Outside of a named entity
94
+ B-MISC |Beginning of a miscellaneous entity right after another miscellaneous entity
95
+ I-MISC | Miscellaneous entity
96
+ B-PER |Beginning of a person’s name right after another person’s name
97
+ I-PER |Person’s name
98
+ B-ORG |Beginning of an organization right after another organization
99
+ I-ORG |organization
100
+ B-LOC |Beginning of a location right after another location
101
+ I-LOC |Location
102
+
103
+ ## Training procedure
104
+
105
+ ### Training hyperparameters
106
+
107
+ The following hyperparameters were used during training:
108
+ - learning_rate: 2e-05
109
+ - train_batch_size: 8
110
+ - eval_batch_size: 8
111
+ - seed: 42
112
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
113
+ - lr_scheduler_type: linear
114
+ - num_epochs: 3
115
+
116
+ ### Training results
117
+
118
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
119
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
120
+ | 0.0908 | 1.0 | 1756 | 0.0887 | 1.0 | 1.0 | 1.0 | 1.0 |
121
+ | 0.0467 | 2.0 | 3512 | 0.0713 | 1.0 | 1.0 | 1.0 | 1.0 |
122
+ | 0.0276 | 3.0 | 5268 | 0.0711 | 1.0 | 1.0 | 1.0 | 1.0 |
123
+
124
+
125
+ ### Framework versions
126
+
127
+ - Transformers 4.41.2
128
+ - Pytorch 2.3.1
129
+ - Datasets 2.20.0
130
+ - Tokenizers 0.19.1