Upload AIMv2ForImageClassification
Browse files- config.json +27 -0
- configuration_aimv2.py +60 -0
- model.safetensors +3 -0
- modeling_aimv2.py +308 -0
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "apple/aimv2-large-patch14-native",
|
3 |
+
"architectures": [
|
4 |
+
"AIMv2ForImageClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "apple/aimv2-large-patch14-native--configuration_aimv2.AIMv2Config",
|
9 |
+
"AutoModel": "apple/aimv2-large-patch14-native--modeling_aimv2.AIMv2Model",
|
10 |
+
"AutoModelForImageClassification": "modeling_aimv2.AIMv2ForImageClassification",
|
11 |
+
"FlaxAutoModel": "apple/aimv2-large-patch14-native--modeling_flax_aimv2.FlaxAIMv2Model"
|
12 |
+
},
|
13 |
+
"hidden_size": 1024,
|
14 |
+
"intermediate_size": 2816,
|
15 |
+
"model_type": "aimv2",
|
16 |
+
"num_attention_heads": 8,
|
17 |
+
"num_channels": 3,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"num_queries": 256,
|
20 |
+
"patch_size": 14,
|
21 |
+
"projection_dropout": 0.0,
|
22 |
+
"qkv_bias": false,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.3",
|
26 |
+
"use_bias": false
|
27 |
+
}
|
configuration_aimv2.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
|
5 |
+
__all__ = ["AIMv2Config"]
|
6 |
+
|
7 |
+
|
8 |
+
class AIMv2Config(PretrainedConfig):
|
9 |
+
"""This is the configuration class to store the configuration of an [`AIMv2Model`].
|
10 |
+
Instantiating a configuration with the defaults will yield a similar configuration
|
11 |
+
to that of the [apple/aimv2-large-patch14-native](https://huggingface.co/apple/aimv2-large-patch14-native)
|
12 |
+
Args:
|
13 |
+
hidden_size: Dimension of the hidden representations.
|
14 |
+
intermediate_size: Dimension of the SwiGLU representations.
|
15 |
+
num_hidden_layers: Number of hidden layers in the Transformer.
|
16 |
+
num_attention_heads: Number of attention heads for each attention layer
|
17 |
+
in the Transformer.
|
18 |
+
num_channels: Number of input channels.
|
19 |
+
num_queries: Number of learnable queries in the head.
|
20 |
+
patch_size: Patch size.
|
21 |
+
rms_norm_eps: Epsilon value used for the RMS normalization layer.
|
22 |
+
attention_dropout: Dropout ratio for attention probabilities.
|
23 |
+
projection_dropout: Dropout ratio for the projection layer after the attention.
|
24 |
+
qkv_bias: Whether to add a bias to the queries, keys and values.
|
25 |
+
use_bias: Whether to add a bias in the feed-forward and projection layers.
|
26 |
+
kwargs: Keyword arguments for the [`PretrainedConfig`].
|
27 |
+
"""
|
28 |
+
|
29 |
+
model_type: str = "aimv2"
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
hidden_size: int = 1024,
|
34 |
+
intermediate_size: int = 2816,
|
35 |
+
num_hidden_layers: int = 24,
|
36 |
+
num_attention_heads: int = 8,
|
37 |
+
num_channels: int = 3,
|
38 |
+
num_queries: int = 256,
|
39 |
+
patch_size: int = 14,
|
40 |
+
rms_norm_eps: float = 1e-5,
|
41 |
+
attention_dropout: float = 0.0,
|
42 |
+
projection_dropout: float = 0.0,
|
43 |
+
qkv_bias: bool = False,
|
44 |
+
use_bias: bool = False,
|
45 |
+
**kwargs: Any,
|
46 |
+
):
|
47 |
+
super().__init__(**kwargs)
|
48 |
+
self.hidden_size = hidden_size
|
49 |
+
self.intermediate_size = intermediate_size
|
50 |
+
self.num_hidden_layers = num_hidden_layers
|
51 |
+
self.num_attention_heads = num_attention_heads
|
52 |
+
self.num_channels = num_channels
|
53 |
+
self.num_queries = num_queries
|
54 |
+
self.patch_size = patch_size
|
55 |
+
self.attention_dropout = attention_dropout
|
56 |
+
self.rms_norm_eps = rms_norm_eps
|
57 |
+
|
58 |
+
self.projection_dropout = projection_dropout
|
59 |
+
self.qkv_bias = qkv_bias
|
60 |
+
self.use_bias = use_bias
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:310c1a3ac285e0284e06f0df0b9e3e69fbdafb4d5724471d27c416b73bf41779
|
3 |
+
size 1235770128
|
modeling_aimv2.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
5 |
+
from .configuration_aimv2 import AIMv2Config
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from transformers.modeling_outputs import (
|
9 |
+
BaseModelOutputWithNoAttention,
|
10 |
+
ImageClassifierOutput,
|
11 |
+
)
|
12 |
+
from transformers.modeling_utils import PreTrainedModel
|
13 |
+
|
14 |
+
__all__ = ["AIMv2Model"]
|
15 |
+
|
16 |
+
|
17 |
+
def _get_1d_sincos_pos_embed_from_grid(
|
18 |
+
embed_dim: int, pos: torch.Tensor
|
19 |
+
) -> torch.Tensor:
|
20 |
+
omega = torch.arange(embed_dim // 2).float()
|
21 |
+
omega /= embed_dim / 2.0
|
22 |
+
omega = 1.0 / 10000**omega # (D / 2,)
|
23 |
+
pos = pos.reshape(-1) # (M,)
|
24 |
+
out = pos[:, None] * omega[None, :] # (M, D / 2), outer product
|
25 |
+
emb_sin, emb_cos = torch.sin(out), torch.cos(out) # (M, D / 2)
|
26 |
+
emb = torch.concatenate([emb_sin, emb_cos], dim=1) # (M, D)
|
27 |
+
return emb
|
28 |
+
|
29 |
+
|
30 |
+
def get_sincos_pos_embed(h: int, w: int, embed_dim: int) -> torch.Tensor:
|
31 |
+
assert embed_dim % 2 == 0, embed_dim
|
32 |
+
grid_h = torch.arange(h).float()
|
33 |
+
grid_w = torch.arange(w).float()
|
34 |
+
grid = torch.meshgrid(grid_w, grid_h, indexing="xy")
|
35 |
+
grid = torch.stack(grid, dim=0)
|
36 |
+
grid = grid.reshape([2, 1, h, w])
|
37 |
+
emb_h = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0])
|
38 |
+
emb_w = _get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1])
|
39 |
+
pos_embed = torch.concatenate([emb_h, emb_w], dim=1) # (H * W, D)
|
40 |
+
return pos_embed
|
41 |
+
|
42 |
+
|
43 |
+
class RMSNorm(nn.Module):
|
44 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
45 |
+
super().__init__()
|
46 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
47 |
+
self.eps = eps
|
48 |
+
|
49 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
50 |
+
output = self._norm(x.float()).type_as(x)
|
51 |
+
return output * self.weight
|
52 |
+
|
53 |
+
def extra_repr(self) -> str:
|
54 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
55 |
+
|
56 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
57 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
58 |
+
|
59 |
+
|
60 |
+
class AIMv2SwiGLUFFN(nn.Module):
|
61 |
+
def __init__(self, config: AIMv2Config):
|
62 |
+
super().__init__()
|
63 |
+
hidden_features = config.intermediate_size
|
64 |
+
in_features = config.hidden_size
|
65 |
+
bias = config.use_bias
|
66 |
+
|
67 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
68 |
+
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
|
69 |
+
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
|
70 |
+
|
71 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
72 |
+
x = F.silu(self.fc1(x)) * self.fc3(x)
|
73 |
+
x = self.fc2(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
|
77 |
+
class AIMv2PatchEmbed(nn.Module):
|
78 |
+
def __init__(self, config: AIMv2Config):
|
79 |
+
super().__init__()
|
80 |
+
self.proj = nn.Conv2d(
|
81 |
+
config.num_channels,
|
82 |
+
config.hidden_size,
|
83 |
+
kernel_size=(config.patch_size, config.patch_size),
|
84 |
+
stride=(config.patch_size, config.patch_size),
|
85 |
+
)
|
86 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
87 |
+
|
88 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
89 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
90 |
+
x = self.norm(x)
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
class AIMv2ViTPreprocessor(nn.Module):
|
95 |
+
def __init__(self, config: AIMv2Config):
|
96 |
+
super().__init__()
|
97 |
+
self.patch_h = config.patch_size
|
98 |
+
self.patch_w = config.patch_size
|
99 |
+
self.embed_dim = config.hidden_size
|
100 |
+
|
101 |
+
self.patchifier = AIMv2PatchEmbed(config)
|
102 |
+
|
103 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
104 |
+
_, _, H, W = x.shape
|
105 |
+
tokens = self.patchifier(x)
|
106 |
+
pos_embed = get_sincos_pos_embed(
|
107 |
+
H // self.patch_h, W // self.patch_w, embed_dim=self.embed_dim
|
108 |
+
)
|
109 |
+
tokens = tokens + pos_embed
|
110 |
+
return tokens
|
111 |
+
|
112 |
+
|
113 |
+
class AIMv2Attention(nn.Module):
|
114 |
+
def __init__(self, config: AIMv2Config):
|
115 |
+
super().__init__()
|
116 |
+
dim = config.hidden_size
|
117 |
+
|
118 |
+
self.num_heads = config.num_attention_heads
|
119 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
120 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
121 |
+
self.proj = nn.Linear(dim, dim, bias=config.use_bias)
|
122 |
+
self.proj_drop = nn.Dropout(config.projection_dropout)
|
123 |
+
|
124 |
+
def forward(
|
125 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
126 |
+
) -> torch.Tensor:
|
127 |
+
B, N, C = x.shape
|
128 |
+
qkv = (
|
129 |
+
self.qkv(x)
|
130 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
131 |
+
.permute(2, 0, 3, 1, 4)
|
132 |
+
)
|
133 |
+
q, k, v = qkv.unbind(0)
|
134 |
+
|
135 |
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
|
136 |
+
x = x.transpose(1, 2).contiguous().reshape(B, N, C)
|
137 |
+
x = self.proj(x)
|
138 |
+
x = self.proj_drop(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
|
142 |
+
class AIMv2Block(nn.Module):
|
143 |
+
def __init__(self, config: AIMv2Config):
|
144 |
+
super().__init__()
|
145 |
+
self.attn = AIMv2Attention(config)
|
146 |
+
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
147 |
+
self.mlp = AIMv2SwiGLUFFN(config)
|
148 |
+
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
149 |
+
|
150 |
+
def forward(
|
151 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
152 |
+
) -> torch.Tensor:
|
153 |
+
x = x + self.attn(self.norm_1(x), mask)
|
154 |
+
x = x + self.mlp(self.norm_2(x))
|
155 |
+
return x
|
156 |
+
|
157 |
+
|
158 |
+
class AIMv2Transformer(nn.Module):
|
159 |
+
def __init__(self, config: AIMv2Config):
|
160 |
+
super().__init__()
|
161 |
+
self.blocks = nn.ModuleList(
|
162 |
+
[AIMv2Block(config) for _ in range(config.num_hidden_layers)]
|
163 |
+
)
|
164 |
+
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
165 |
+
|
166 |
+
def forward(
|
167 |
+
self,
|
168 |
+
tokens: torch.Tensor,
|
169 |
+
mask: Optional[torch.Tensor] = None,
|
170 |
+
output_hidden_states: bool = False,
|
171 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
|
172 |
+
hidden_states = () if output_hidden_states else None
|
173 |
+
for block in self.blocks:
|
174 |
+
tokens = block(tokens, mask)
|
175 |
+
if output_hidden_states:
|
176 |
+
hidden_states += (tokens,)
|
177 |
+
tokens = self.post_trunk_norm(tokens)
|
178 |
+
return tokens, hidden_states
|
179 |
+
|
180 |
+
|
181 |
+
class AIMv2PretrainedModel(PreTrainedModel):
|
182 |
+
config_class = AIMv2Config
|
183 |
+
base_model_prefix = "aimv2"
|
184 |
+
main_input_name = "pixel_values"
|
185 |
+
_supports_sdpa = True
|
186 |
+
|
187 |
+
|
188 |
+
class AIMv2Model(AIMv2PretrainedModel):
|
189 |
+
def __init__(self, config: AIMv2Config):
|
190 |
+
super().__init__(config)
|
191 |
+
self.preprocessor = AIMv2ViTPreprocessor(config)
|
192 |
+
self.trunk = AIMv2Transformer(config)
|
193 |
+
|
194 |
+
def forward(
|
195 |
+
self,
|
196 |
+
pixel_values: torch.Tensor,
|
197 |
+
mask: Optional[torch.Tensor] = None,
|
198 |
+
output_hidden_states: Optional[bool] = None,
|
199 |
+
return_dict: Optional[bool] = None,
|
200 |
+
) -> Union[
|
201 |
+
Tuple[torch.Tensor],
|
202 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
|
203 |
+
BaseModelOutputWithNoAttention,
|
204 |
+
]:
|
205 |
+
if output_hidden_states is None:
|
206 |
+
output_hidden_states = self.config.output_hidden_states
|
207 |
+
if return_dict is None:
|
208 |
+
return_dict = self.config.use_return_dict
|
209 |
+
|
210 |
+
x = self.preprocessor(pixel_values)
|
211 |
+
x, hidden_states = self.trunk(
|
212 |
+
x, mask, output_hidden_states=output_hidden_states
|
213 |
+
)
|
214 |
+
|
215 |
+
if not return_dict:
|
216 |
+
res = (x,)
|
217 |
+
res += (hidden_states,) if output_hidden_states else ()
|
218 |
+
return res
|
219 |
+
|
220 |
+
return BaseModelOutputWithNoAttention(
|
221 |
+
last_hidden_state=x,
|
222 |
+
hidden_states=hidden_states,
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
227 |
+
def __init__(self, config: AIMv2Config):
|
228 |
+
super().__init__(config)
|
229 |
+
|
230 |
+
self.num_labels = config.num_labels
|
231 |
+
self.aimv2 = AIMv2Model(config)
|
232 |
+
|
233 |
+
# Classifier head
|
234 |
+
self.classifier = (
|
235 |
+
nn.Linear(config.hidden_size, config.num_labels)
|
236 |
+
if config.num_labels > 0
|
237 |
+
else nn.Identity()
|
238 |
+
)
|
239 |
+
|
240 |
+
# Initialize weights and apply final processing
|
241 |
+
self.post_init()
|
242 |
+
|
243 |
+
def forward(
|
244 |
+
self,
|
245 |
+
pixel_values: Optional[torch.Tensor] = None,
|
246 |
+
head_mask: Optional[torch.Tensor] = None,
|
247 |
+
labels: Optional[torch.Tensor] = None,
|
248 |
+
output_hidden_states: Optional[bool] = None,
|
249 |
+
return_dict: Optional[bool] = None,
|
250 |
+
) -> Union[tuple, ImageClassifierOutput]:
|
251 |
+
r"""
|
252 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
253 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
254 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
255 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
256 |
+
"""
|
257 |
+
return_dict = (
|
258 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
259 |
+
)
|
260 |
+
|
261 |
+
outputs = self.aimv2(
|
262 |
+
pixel_values,
|
263 |
+
mask=head_mask,
|
264 |
+
output_hidden_states=output_hidden_states,
|
265 |
+
return_dict=return_dict,
|
266 |
+
)
|
267 |
+
|
268 |
+
sequence_output = outputs[0]
|
269 |
+
|
270 |
+
logits = self.classifier(sequence_output[:, 0, :])
|
271 |
+
|
272 |
+
loss = None
|
273 |
+
if labels is not None:
|
274 |
+
# move labels to correct device to enable model parallelism
|
275 |
+
labels = labels.to(logits.device)
|
276 |
+
if self.config.problem_type is None:
|
277 |
+
if self.num_labels == 1:
|
278 |
+
self.config.problem_type = "regression"
|
279 |
+
elif self.num_labels > 1 and (
|
280 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
281 |
+
):
|
282 |
+
self.config.problem_type = "single_label_classification"
|
283 |
+
else:
|
284 |
+
self.config.problem_type = "multi_label_classification"
|
285 |
+
|
286 |
+
if self.config.problem_type == "regression":
|
287 |
+
loss_fct = MSELoss()
|
288 |
+
if self.num_labels == 1:
|
289 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
290 |
+
else:
|
291 |
+
loss = loss_fct(logits, labels)
|
292 |
+
elif self.config.problem_type == "single_label_classification":
|
293 |
+
loss_fct = CrossEntropyLoss()
|
294 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
295 |
+
elif self.config.problem_type == "multi_label_classification":
|
296 |
+
loss_fct = BCEWithLogitsLoss()
|
297 |
+
loss = loss_fct(logits, labels)
|
298 |
+
|
299 |
+
if not return_dict:
|
300 |
+
output = (logits,) + outputs[1:]
|
301 |
+
return ((loss,) + output) if loss is not None else output
|
302 |
+
|
303 |
+
return ImageClassifierOutput(
|
304 |
+
loss=loss,
|
305 |
+
logits=logits,
|
306 |
+
hidden_states=outputs.hidden_states,
|
307 |
+
# attentions=outputs.attentions,
|
308 |
+
)
|