Update modeling_aimv2.py
Browse files- modeling_aimv2.py +3 -18
modeling_aimv2.py
CHANGED
@@ -222,7 +222,7 @@ class AIMv2Model(AIMv2PretrainedModel):
|
|
222 |
hidden_states=hidden_states,
|
223 |
)
|
224 |
|
225 |
-
|
226 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
227 |
def __init__(self, config: AIMv2Config):
|
228 |
super().__init__(config)
|
@@ -310,9 +310,9 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
310 |
hidden_states=outputs.hidden_states,
|
311 |
# attentions=outputs.attentions,
|
312 |
)
|
|
|
313 |
|
314 |
|
315 |
-
'''
|
316 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
317 |
def __init__(self, config: AIMv2Config):
|
318 |
super().__init__(config)
|
@@ -338,15 +338,10 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
338 |
output_hidden_states: Optional[bool] = None,
|
339 |
return_dict: Optional[bool] = None,
|
340 |
) -> Union[tuple, ImageClassifierOutput]:
|
341 |
-
print("Forward pass initiated")
|
342 |
-
print(f"Input pixel_values shape: {pixel_values.shape if pixel_values is not None else 'None'}")
|
343 |
-
print(f"Head mask provided: {head_mask is not None}")
|
344 |
-
print(f"Labels provided: {labels is not None}")
|
345 |
|
346 |
return_dict = (
|
347 |
return_dict if return_dict is not None else self.config.use_return_dict
|
348 |
)
|
349 |
-
print(f"Using return_dict: {return_dict}")
|
350 |
|
351 |
# Call base model
|
352 |
outputs = self.aimv2(
|
@@ -356,33 +351,23 @@ class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
|
356 |
return_dict=return_dict,
|
357 |
)
|
358 |
sequence_output = outputs[0]
|
359 |
-
print(f"Sequence output shape: {sequence_output.shape}")
|
360 |
-
|
361 |
# Classifier head
|
362 |
logits = self.classifier(sequence_output[:, 0, :])
|
363 |
-
print(f"Logits shape: {logits.shape}")
|
364 |
-
print(f"Logits shape: {logits}")
|
365 |
|
366 |
loss = None
|
367 |
if labels is not None:
|
368 |
labels = labels.to(logits.device)
|
369 |
-
print(f"Labels shape: {labels.shape}")
|
370 |
-
print(f"Labels shape: {labels}")
|
371 |
-
|
372 |
# Always use cross-entropy loss
|
373 |
loss_fct = CrossEntropyLoss()
|
374 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
375 |
-
print(f"Loss computed: {loss.item()}")
|
376 |
|
377 |
if not return_dict:
|
378 |
output = (logits,) + outputs[1:]
|
379 |
-
print("Returning as tuple")
|
380 |
return ((loss,) + output) if loss is not None else output
|
381 |
|
382 |
-
print("Returning as ImageClassifierOutput")
|
383 |
return ImageClassifierOutput(
|
384 |
loss=loss,
|
385 |
logits=logits,
|
386 |
hidden_states=outputs.hidden_states,
|
387 |
)
|
388 |
-
|
|
|
222 |
hidden_states=hidden_states,
|
223 |
)
|
224 |
|
225 |
+
'''
|
226 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
227 |
def __init__(self, config: AIMv2Config):
|
228 |
super().__init__(config)
|
|
|
310 |
hidden_states=outputs.hidden_states,
|
311 |
# attentions=outputs.attentions,
|
312 |
)
|
313 |
+
'''
|
314 |
|
315 |
|
|
|
316 |
class AIMv2ForImageClassification(AIMv2PretrainedModel):
|
317 |
def __init__(self, config: AIMv2Config):
|
318 |
super().__init__(config)
|
|
|
338 |
output_hidden_states: Optional[bool] = None,
|
339 |
return_dict: Optional[bool] = None,
|
340 |
) -> Union[tuple, ImageClassifierOutput]:
|
|
|
|
|
|
|
|
|
341 |
|
342 |
return_dict = (
|
343 |
return_dict if return_dict is not None else self.config.use_return_dict
|
344 |
)
|
|
|
345 |
|
346 |
# Call base model
|
347 |
outputs = self.aimv2(
|
|
|
351 |
return_dict=return_dict,
|
352 |
)
|
353 |
sequence_output = outputs[0]
|
|
|
|
|
354 |
# Classifier head
|
355 |
logits = self.classifier(sequence_output[:, 0, :])
|
|
|
|
|
356 |
|
357 |
loss = None
|
358 |
if labels is not None:
|
359 |
labels = labels.to(logits.device)
|
|
|
|
|
|
|
360 |
# Always use cross-entropy loss
|
361 |
loss_fct = CrossEntropyLoss()
|
362 |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
|
|
363 |
|
364 |
if not return_dict:
|
365 |
output = (logits,) + outputs[1:]
|
|
|
366 |
return ((loss,) + output) if loss is not None else output
|
367 |
|
|
|
368 |
return ImageClassifierOutput(
|
369 |
loss=loss,
|
370 |
logits=logits,
|
371 |
hidden_states=outputs.hidden_states,
|
372 |
)
|
373 |
+
|