amaye15 commited on
Commit
b834f7b
1 Parent(s): 2dc4b20

End of training

Browse files
Files changed (7) hide show
  1. README.md +191 -0
  2. config.json +285 -0
  3. config.toml +27 -0
  4. model.safetensors +3 -0
  5. preprocessor_config.json +37 -0
  6. train.ipynb +470 -0
  7. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/resnet-50
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - stanford-dogs
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ - precision
12
+ - recall
13
+ model-index:
14
+ - name: microsoft-resnet-50-batch32-lr0.005-standford-dogs
15
+ results:
16
+ - task:
17
+ name: Image Classification
18
+ type: image-classification
19
+ dataset:
20
+ name: stanford-dogs
21
+ type: stanford-dogs
22
+ config: default
23
+ split: full
24
+ args: default
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.82555879494655
29
+ - name: F1
30
+ type: f1
31
+ value: 0.8098053489000772
32
+ - name: Precision
33
+ type: precision
34
+ value: 0.8426096100022951
35
+ - name: Recall
36
+ type: recall
37
+ value: 0.817750070550628
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # microsoft-resnet-50-batch32-lr0.005-standford-dogs
44
+
45
+ This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the stanford-dogs dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 1.1192
48
+ - Accuracy: 0.8256
49
+ - F1: 0.8098
50
+ - Precision: 0.8426
51
+ - Recall: 0.8178
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 32
72
+ - eval_batch_size: 32
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 4
75
+ - total_train_batch_size: 128
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - training_steps: 1000
79
+
80
+ ### Training results
81
+
82
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
83
+ |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
84
+ | 4.7839 | 0.0777 | 10 | 4.7747 | 0.2556 | 0.2410 | 0.4479 | 0.2436 |
85
+ | 4.7731 | 0.1553 | 20 | 4.7576 | 0.3511 | 0.3282 | 0.6032 | 0.3338 |
86
+ | 4.7617 | 0.2330 | 30 | 4.7363 | 0.4184 | 0.3974 | 0.6668 | 0.3947 |
87
+ | 4.7445 | 0.3107 | 40 | 4.7115 | 0.5265 | 0.4927 | 0.7032 | 0.4993 |
88
+ | 4.7266 | 0.3883 | 50 | 4.6846 | 0.5561 | 0.5413 | 0.7422 | 0.5333 |
89
+ | 4.7081 | 0.4660 | 60 | 4.6547 | 0.6062 | 0.5767 | 0.7392 | 0.5828 |
90
+ | 4.6807 | 0.5437 | 70 | 4.6161 | 0.5909 | 0.5750 | 0.7740 | 0.5673 |
91
+ | 4.6572 | 0.6214 | 80 | 4.5761 | 0.6324 | 0.6162 | 0.8021 | 0.6102 |
92
+ | 4.6286 | 0.6990 | 90 | 4.5274 | 0.6297 | 0.6241 | 0.8188 | 0.6080 |
93
+ | 4.598 | 0.7767 | 100 | 4.4746 | 0.6569 | 0.6609 | 0.8380 | 0.6370 |
94
+ | 4.5578 | 0.8544 | 110 | 4.4193 | 0.6674 | 0.6713 | 0.8301 | 0.6486 |
95
+ | 4.521 | 0.9320 | 120 | 4.3553 | 0.6914 | 0.6868 | 0.8215 | 0.6729 |
96
+ | 4.4888 | 1.0097 | 130 | 4.2924 | 0.7082 | 0.7064 | 0.8415 | 0.6904 |
97
+ | 4.4312 | 1.0874 | 140 | 4.2125 | 0.7155 | 0.7076 | 0.8381 | 0.6980 |
98
+ | 4.3865 | 1.1650 | 150 | 4.1433 | 0.7145 | 0.7115 | 0.8315 | 0.6984 |
99
+ | 4.336 | 1.2427 | 160 | 4.0630 | 0.7082 | 0.7010 | 0.8353 | 0.6930 |
100
+ | 4.2903 | 1.3204 | 170 | 3.9781 | 0.7148 | 0.7024 | 0.8109 | 0.6982 |
101
+ | 4.2465 | 1.3981 | 180 | 3.8896 | 0.7376 | 0.7234 | 0.8328 | 0.7217 |
102
+ | 4.1924 | 1.4757 | 190 | 3.8117 | 0.7476 | 0.7310 | 0.8161 | 0.7322 |
103
+ | 4.1217 | 1.5534 | 200 | 3.7499 | 0.7510 | 0.7344 | 0.8105 | 0.7372 |
104
+ | 4.068 | 1.6311 | 210 | 3.6340 | 0.7551 | 0.7355 | 0.8183 | 0.7409 |
105
+ | 4.0148 | 1.7087 | 220 | 3.5678 | 0.7546 | 0.7358 | 0.8066 | 0.7413 |
106
+ | 3.9682 | 1.7864 | 230 | 3.4852 | 0.7663 | 0.7477 | 0.8145 | 0.7530 |
107
+ | 3.9196 | 1.8641 | 240 | 3.3841 | 0.7648 | 0.7464 | 0.8075 | 0.7520 |
108
+ | 3.8481 | 1.9417 | 250 | 3.3003 | 0.7626 | 0.7421 | 0.8056 | 0.7495 |
109
+ | 3.8017 | 2.0194 | 260 | 3.2395 | 0.7578 | 0.7370 | 0.8045 | 0.7461 |
110
+ | 3.7528 | 2.0971 | 270 | 3.1183 | 0.7578 | 0.7349 | 0.8007 | 0.7457 |
111
+ | 3.6614 | 2.1748 | 280 | 3.0364 | 0.7655 | 0.7435 | 0.8011 | 0.7531 |
112
+ | 3.6522 | 2.2524 | 290 | 2.9775 | 0.7629 | 0.7415 | 0.7990 | 0.7507 |
113
+ | 3.5922 | 2.3301 | 300 | 2.8995 | 0.7665 | 0.7466 | 0.8090 | 0.7551 |
114
+ | 3.519 | 2.4078 | 310 | 2.8049 | 0.7680 | 0.7488 | 0.8129 | 0.7566 |
115
+ | 3.4724 | 2.4854 | 320 | 2.7425 | 0.7704 | 0.7528 | 0.8170 | 0.7601 |
116
+ | 3.4333 | 2.5631 | 330 | 2.6444 | 0.7755 | 0.7560 | 0.8236 | 0.7648 |
117
+ | 3.4303 | 2.6408 | 340 | 2.5672 | 0.7687 | 0.7473 | 0.8178 | 0.7585 |
118
+ | 3.3287 | 2.7184 | 350 | 2.5194 | 0.7806 | 0.7599 | 0.8229 | 0.7712 |
119
+ | 3.2916 | 2.7961 | 360 | 2.4733 | 0.7796 | 0.7575 | 0.8223 | 0.7698 |
120
+ | 3.1999 | 2.8738 | 370 | 2.4098 | 0.7792 | 0.7565 | 0.8158 | 0.7692 |
121
+ | 3.211 | 2.9515 | 380 | 2.3081 | 0.7796 | 0.7571 | 0.8284 | 0.7692 |
122
+ | 3.1437 | 3.0291 | 390 | 2.2523 | 0.7830 | 0.7600 | 0.8212 | 0.7730 |
123
+ | 3.1036 | 3.1068 | 400 | 2.2000 | 0.7847 | 0.7619 | 0.8210 | 0.7740 |
124
+ | 3.0345 | 3.1845 | 410 | 2.1385 | 0.7833 | 0.7606 | 0.8261 | 0.7726 |
125
+ | 2.99 | 3.2621 | 420 | 2.1079 | 0.7799 | 0.7560 | 0.8199 | 0.7698 |
126
+ | 2.9386 | 3.3398 | 430 | 2.0585 | 0.7821 | 0.7584 | 0.8232 | 0.7716 |
127
+ | 2.9093 | 3.4175 | 440 | 2.0176 | 0.7823 | 0.7586 | 0.8225 | 0.7721 |
128
+ | 2.8868 | 3.4951 | 450 | 1.9702 | 0.7818 | 0.7585 | 0.8183 | 0.7720 |
129
+ | 2.8603 | 3.5728 | 460 | 1.8973 | 0.7864 | 0.7645 | 0.8241 | 0.7767 |
130
+ | 2.8232 | 3.6505 | 470 | 1.8814 | 0.7855 | 0.7616 | 0.8128 | 0.7758 |
131
+ | 2.7889 | 3.7282 | 480 | 1.8170 | 0.7886 | 0.7676 | 0.8214 | 0.7792 |
132
+ | 2.7561 | 3.8058 | 490 | 1.7750 | 0.7920 | 0.7721 | 0.8364 | 0.7828 |
133
+ | 2.7243 | 3.8835 | 500 | 1.7369 | 0.7906 | 0.7695 | 0.8295 | 0.7813 |
134
+ | 2.6619 | 3.9612 | 510 | 1.7225 | 0.7971 | 0.7766 | 0.8292 | 0.7884 |
135
+ | 2.7054 | 4.0388 | 520 | 1.6453 | 0.7983 | 0.7788 | 0.8346 | 0.7894 |
136
+ | 2.6069 | 4.1165 | 530 | 1.6340 | 0.8000 | 0.7807 | 0.8347 | 0.7910 |
137
+ | 2.5627 | 4.1942 | 540 | 1.6538 | 0.7971 | 0.7760 | 0.8337 | 0.7878 |
138
+ | 2.5555 | 4.2718 | 550 | 1.5779 | 0.7998 | 0.7785 | 0.8324 | 0.7906 |
139
+ | 2.5541 | 4.3495 | 560 | 1.5960 | 0.7945 | 0.7736 | 0.8329 | 0.7850 |
140
+ | 2.513 | 4.4272 | 570 | 1.5537 | 0.8025 | 0.7841 | 0.8368 | 0.7941 |
141
+ | 2.442 | 4.5049 | 580 | 1.5196 | 0.8034 | 0.7858 | 0.8380 | 0.7954 |
142
+ | 2.4763 | 4.5825 | 590 | 1.5009 | 0.8052 | 0.7870 | 0.8345 | 0.7965 |
143
+ | 2.4412 | 4.6602 | 600 | 1.4760 | 0.8098 | 0.7924 | 0.8391 | 0.8015 |
144
+ | 2.383 | 4.7379 | 610 | 1.4403 | 0.8088 | 0.7920 | 0.8395 | 0.8007 |
145
+ | 2.3731 | 4.8155 | 620 | 1.4123 | 0.8120 | 0.7956 | 0.8401 | 0.8039 |
146
+ | 2.3616 | 4.8932 | 630 | 1.4193 | 0.8105 | 0.7940 | 0.8369 | 0.8021 |
147
+ | 2.3311 | 4.9709 | 640 | 1.4220 | 0.8098 | 0.7934 | 0.8370 | 0.8016 |
148
+ | 2.3373 | 5.0485 | 650 | 1.3956 | 0.8081 | 0.7907 | 0.8367 | 0.7996 |
149
+ | 2.2879 | 5.1262 | 660 | 1.3375 | 0.8144 | 0.7976 | 0.8410 | 0.8062 |
150
+ | 2.299 | 5.2039 | 670 | 1.3431 | 0.8146 | 0.7967 | 0.8371 | 0.8061 |
151
+ | 2.2471 | 5.2816 | 680 | 1.3360 | 0.8151 | 0.7985 | 0.8389 | 0.8070 |
152
+ | 2.2419 | 5.3592 | 690 | 1.3139 | 0.8139 | 0.7977 | 0.8377 | 0.8058 |
153
+ | 2.2195 | 5.4369 | 700 | 1.3225 | 0.8151 | 0.7974 | 0.8395 | 0.8062 |
154
+ | 2.1901 | 5.5146 | 710 | 1.2797 | 0.8173 | 0.8001 | 0.8397 | 0.8087 |
155
+ | 2.1931 | 5.5922 | 720 | 1.2543 | 0.8192 | 0.8032 | 0.8423 | 0.8109 |
156
+ | 2.195 | 5.6699 | 730 | 1.2767 | 0.8209 | 0.8039 | 0.8405 | 0.8125 |
157
+ | 2.1413 | 5.7476 | 740 | 1.2735 | 0.8212 | 0.8053 | 0.8416 | 0.8132 |
158
+ | 2.1696 | 5.8252 | 750 | 1.2694 | 0.8149 | 0.7983 | 0.8358 | 0.8069 |
159
+ | 2.1387 | 5.9029 | 760 | 1.2532 | 0.8217 | 0.8062 | 0.8422 | 0.8136 |
160
+ | 2.1811 | 5.9806 | 770 | 1.2426 | 0.8197 | 0.8034 | 0.8417 | 0.8116 |
161
+ | 2.077 | 6.0583 | 780 | 1.2101 | 0.8243 | 0.8078 | 0.8464 | 0.8159 |
162
+ | 2.1099 | 6.1359 | 790 | 1.1947 | 0.8265 | 0.8108 | 0.8455 | 0.8186 |
163
+ | 2.0825 | 6.2136 | 800 | 1.1826 | 0.8241 | 0.8080 | 0.8455 | 0.8161 |
164
+ | 2.0933 | 6.2913 | 810 | 1.1934 | 0.8282 | 0.8128 | 0.8474 | 0.8207 |
165
+ | 2.0857 | 6.3689 | 820 | 1.1897 | 0.8258 | 0.8099 | 0.8465 | 0.8181 |
166
+ | 2.0881 | 6.4466 | 830 | 1.1666 | 0.8277 | 0.8124 | 0.8477 | 0.8199 |
167
+ | 2.074 | 6.5243 | 840 | 1.1815 | 0.8248 | 0.8081 | 0.8433 | 0.8167 |
168
+ | 2.0145 | 6.6019 | 850 | 1.1680 | 0.8292 | 0.8130 | 0.8473 | 0.8209 |
169
+ | 2.0778 | 6.6796 | 860 | 1.1565 | 0.8260 | 0.8094 | 0.8348 | 0.8178 |
170
+ | 1.9784 | 6.7573 | 870 | 1.1571 | 0.8345 | 0.8201 | 0.8529 | 0.8269 |
171
+ | 2.0595 | 6.8350 | 880 | 1.1554 | 0.8309 | 0.8165 | 0.8475 | 0.8234 |
172
+ | 2.0252 | 6.9126 | 890 | 1.1444 | 0.8282 | 0.8140 | 0.8476 | 0.8209 |
173
+ | 1.9708 | 6.9903 | 900 | 1.1478 | 0.8302 | 0.8158 | 0.8472 | 0.8224 |
174
+ | 2.0656 | 7.0680 | 910 | 1.1285 | 0.8324 | 0.8169 | 0.8485 | 0.8245 |
175
+ | 2.0086 | 7.1456 | 920 | 1.1289 | 0.8290 | 0.8148 | 0.8444 | 0.8219 |
176
+ | 2.0056 | 7.2233 | 930 | 1.1268 | 0.8280 | 0.8130 | 0.8470 | 0.8208 |
177
+ | 1.9498 | 7.3010 | 940 | 1.1246 | 0.8311 | 0.8158 | 0.8497 | 0.8234 |
178
+ | 2.0067 | 7.3786 | 950 | 1.1495 | 0.8285 | 0.8132 | 0.8440 | 0.8207 |
179
+ | 2.0171 | 7.4563 | 960 | 1.1168 | 0.8285 | 0.8138 | 0.8501 | 0.8209 |
180
+ | 1.9683 | 7.5340 | 970 | 1.1290 | 0.8314 | 0.8165 | 0.8500 | 0.8235 |
181
+ | 1.9771 | 7.6117 | 980 | 1.0982 | 0.8314 | 0.8153 | 0.8454 | 0.8233 |
182
+ | 2.0086 | 7.6893 | 990 | 1.1275 | 0.8294 | 0.8151 | 0.8491 | 0.8218 |
183
+ | 1.9854 | 7.7670 | 1000 | 1.1192 | 0.8256 | 0.8098 | 0.8426 | 0.8178 |
184
+
185
+
186
+ ### Framework versions
187
+
188
+ - Transformers 4.40.2
189
+ - Pytorch 2.3.0
190
+ - Datasets 2.19.1
191
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/resnet-50",
3
+ "architectures": [
4
+ "ResNetForImageClassification"
5
+ ],
6
+ "depths": [
7
+ 3,
8
+ 4,
9
+ 6,
10
+ 3
11
+ ],
12
+ "downsample_in_bottleneck": false,
13
+ "downsample_in_first_stage": false,
14
+ "embedding_size": 64,
15
+ "hidden_act": "relu",
16
+ "hidden_sizes": [
17
+ 256,
18
+ 512,
19
+ 1024,
20
+ 2048
21
+ ],
22
+ "id2label": {
23
+ "0": "Affenpinscher",
24
+ "1": "Afghan Hound",
25
+ "2": "African Hunting Dog",
26
+ "3": "Airedale",
27
+ "4": "American Staffordshire Terrier",
28
+ "5": "Appenzeller",
29
+ "6": "Australian Terrier",
30
+ "7": "Basenji",
31
+ "8": "Basset",
32
+ "9": "Beagle",
33
+ "10": "Bedlington Terrier",
34
+ "11": "Bernese Mountain Dog",
35
+ "12": "Black And Tan Coonhound",
36
+ "13": "Blenheim Spaniel",
37
+ "14": "Bloodhound",
38
+ "15": "Bluetick",
39
+ "16": "Border Collie",
40
+ "17": "Border Terrier",
41
+ "18": "Borzoi",
42
+ "19": "Boston Bull",
43
+ "20": "Bouvier Des Flandres",
44
+ "21": "Boxer",
45
+ "22": "Brabancon Griffon",
46
+ "23": "Briard",
47
+ "24": "Brittany Spaniel",
48
+ "25": "Bull Mastiff",
49
+ "26": "Cairn",
50
+ "27": "Cardigan",
51
+ "28": "Chesapeake Bay Retriever",
52
+ "29": "Chihuahua",
53
+ "30": "Chow",
54
+ "31": "Clumber",
55
+ "32": "Cocker Spaniel",
56
+ "33": "Collie",
57
+ "34": "Curly Coated Retriever",
58
+ "35": "Dandie Dinmont",
59
+ "36": "Dhole",
60
+ "37": "Dingo",
61
+ "38": "Doberman",
62
+ "39": "English Foxhound",
63
+ "40": "English Setter",
64
+ "41": "English Springer",
65
+ "42": "Entlebucher",
66
+ "43": "Eskimo Dog",
67
+ "44": "Flat Coated Retriever",
68
+ "45": "French Bulldog",
69
+ "46": "German Shepherd",
70
+ "47": "German Short Haired Pointer",
71
+ "48": "Giant Schnauzer",
72
+ "49": "Golden Retriever",
73
+ "50": "Gordon Setter",
74
+ "51": "Great Dane",
75
+ "52": "Great Pyrenees",
76
+ "53": "Greater Swiss Mountain Dog",
77
+ "54": "Groenendael",
78
+ "55": "Ibizan Hound",
79
+ "56": "Irish Setter",
80
+ "57": "Irish Terrier",
81
+ "58": "Irish Water Spaniel",
82
+ "59": "Irish Wolfhound",
83
+ "60": "Italian Greyhound",
84
+ "61": "Japanese Spaniel",
85
+ "62": "Keeshond",
86
+ "63": "Kelpie",
87
+ "64": "Kerry Blue Terrier",
88
+ "65": "Komondor",
89
+ "66": "Kuvasz",
90
+ "67": "Labrador Retriever",
91
+ "68": "Lakeland Terrier",
92
+ "69": "Leonberg",
93
+ "70": "Lhasa",
94
+ "71": "Malamute",
95
+ "72": "Malinois",
96
+ "73": "Maltese Dog",
97
+ "74": "Mexican Hairless",
98
+ "75": "Miniature Pinscher",
99
+ "76": "Miniature Poodle",
100
+ "77": "Miniature Schnauzer",
101
+ "78": "Newfoundland",
102
+ "79": "Norfolk Terrier",
103
+ "80": "Norwegian Elkhound",
104
+ "81": "Norwich Terrier",
105
+ "82": "Old English Sheepdog",
106
+ "83": "Otterhound",
107
+ "84": "Papillon",
108
+ "85": "Pekinese",
109
+ "86": "Pembroke",
110
+ "87": "Pomeranian",
111
+ "88": "Pug",
112
+ "89": "Redbone",
113
+ "90": "Rhodesian Ridgeback",
114
+ "91": "Rottweiler",
115
+ "92": "Saint Bernard",
116
+ "93": "Saluki",
117
+ "94": "Samoyed",
118
+ "95": "Schipperke",
119
+ "96": "Scotch Terrier",
120
+ "97": "Scottish Deerhound",
121
+ "98": "Sealyham Terrier",
122
+ "99": "Shetland Sheepdog",
123
+ "100": "Shih Tzu",
124
+ "101": "Siberian Husky",
125
+ "102": "Silky Terrier",
126
+ "103": "Soft Coated Wheaten Terrier",
127
+ "104": "Staffordshire Bullterrier",
128
+ "105": "Standard Poodle",
129
+ "106": "Standard Schnauzer",
130
+ "107": "Sussex Spaniel",
131
+ "108": "Tibetan Mastiff",
132
+ "109": "Tibetan Terrier",
133
+ "110": "Toy Poodle",
134
+ "111": "Toy Terrier",
135
+ "112": "Vizsla",
136
+ "113": "Walker Hound",
137
+ "114": "Weimaraner",
138
+ "115": "Welsh Springer Spaniel",
139
+ "116": "West Highland White Terrier",
140
+ "117": "Whippet",
141
+ "118": "Wire Haired Fox Terrier",
142
+ "119": "Yorkshire Terrier"
143
+ },
144
+ "label2id": {
145
+ "Affenpinscher": 0,
146
+ "Afghan Hound": 1,
147
+ "African Hunting Dog": 2,
148
+ "Airedale": 3,
149
+ "American Staffordshire Terrier": 4,
150
+ "Appenzeller": 5,
151
+ "Australian Terrier": 6,
152
+ "Basenji": 7,
153
+ "Basset": 8,
154
+ "Beagle": 9,
155
+ "Bedlington Terrier": 10,
156
+ "Bernese Mountain Dog": 11,
157
+ "Black And Tan Coonhound": 12,
158
+ "Blenheim Spaniel": 13,
159
+ "Bloodhound": 14,
160
+ "Bluetick": 15,
161
+ "Border Collie": 16,
162
+ "Border Terrier": 17,
163
+ "Borzoi": 18,
164
+ "Boston Bull": 19,
165
+ "Bouvier Des Flandres": 20,
166
+ "Boxer": 21,
167
+ "Brabancon Griffon": 22,
168
+ "Briard": 23,
169
+ "Brittany Spaniel": 24,
170
+ "Bull Mastiff": 25,
171
+ "Cairn": 26,
172
+ "Cardigan": 27,
173
+ "Chesapeake Bay Retriever": 28,
174
+ "Chihuahua": 29,
175
+ "Chow": 30,
176
+ "Clumber": 31,
177
+ "Cocker Spaniel": 32,
178
+ "Collie": 33,
179
+ "Curly Coated Retriever": 34,
180
+ "Dandie Dinmont": 35,
181
+ "Dhole": 36,
182
+ "Dingo": 37,
183
+ "Doberman": 38,
184
+ "English Foxhound": 39,
185
+ "English Setter": 40,
186
+ "English Springer": 41,
187
+ "Entlebucher": 42,
188
+ "Eskimo Dog": 43,
189
+ "Flat Coated Retriever": 44,
190
+ "French Bulldog": 45,
191
+ "German Shepherd": 46,
192
+ "German Short Haired Pointer": 47,
193
+ "Giant Schnauzer": 48,
194
+ "Golden Retriever": 49,
195
+ "Gordon Setter": 50,
196
+ "Great Dane": 51,
197
+ "Great Pyrenees": 52,
198
+ "Greater Swiss Mountain Dog": 53,
199
+ "Groenendael": 54,
200
+ "Ibizan Hound": 55,
201
+ "Irish Setter": 56,
202
+ "Irish Terrier": 57,
203
+ "Irish Water Spaniel": 58,
204
+ "Irish Wolfhound": 59,
205
+ "Italian Greyhound": 60,
206
+ "Japanese Spaniel": 61,
207
+ "Keeshond": 62,
208
+ "Kelpie": 63,
209
+ "Kerry Blue Terrier": 64,
210
+ "Komondor": 65,
211
+ "Kuvasz": 66,
212
+ "Labrador Retriever": 67,
213
+ "Lakeland Terrier": 68,
214
+ "Leonberg": 69,
215
+ "Lhasa": 70,
216
+ "Malamute": 71,
217
+ "Malinois": 72,
218
+ "Maltese Dog": 73,
219
+ "Mexican Hairless": 74,
220
+ "Miniature Pinscher": 75,
221
+ "Miniature Poodle": 76,
222
+ "Miniature Schnauzer": 77,
223
+ "Newfoundland": 78,
224
+ "Norfolk Terrier": 79,
225
+ "Norwegian Elkhound": 80,
226
+ "Norwich Terrier": 81,
227
+ "Old English Sheepdog": 82,
228
+ "Otterhound": 83,
229
+ "Papillon": 84,
230
+ "Pekinese": 85,
231
+ "Pembroke": 86,
232
+ "Pomeranian": 87,
233
+ "Pug": 88,
234
+ "Redbone": 89,
235
+ "Rhodesian Ridgeback": 90,
236
+ "Rottweiler": 91,
237
+ "Saint Bernard": 92,
238
+ "Saluki": 93,
239
+ "Samoyed": 94,
240
+ "Schipperke": 95,
241
+ "Scotch Terrier": 96,
242
+ "Scottish Deerhound": 97,
243
+ "Sealyham Terrier": 98,
244
+ "Shetland Sheepdog": 99,
245
+ "Shih Tzu": 100,
246
+ "Siberian Husky": 101,
247
+ "Silky Terrier": 102,
248
+ "Soft Coated Wheaten Terrier": 103,
249
+ "Staffordshire Bullterrier": 104,
250
+ "Standard Poodle": 105,
251
+ "Standard Schnauzer": 106,
252
+ "Sussex Spaniel": 107,
253
+ "Tibetan Mastiff": 108,
254
+ "Tibetan Terrier": 109,
255
+ "Toy Poodle": 110,
256
+ "Toy Terrier": 111,
257
+ "Vizsla": 112,
258
+ "Walker Hound": 113,
259
+ "Weimaraner": 114,
260
+ "Welsh Springer Spaniel": 115,
261
+ "West Highland White Terrier": 116,
262
+ "Whippet": 117,
263
+ "Wire Haired Fox Terrier": 118,
264
+ "Yorkshire Terrier": 119
265
+ },
266
+ "layer_type": "bottleneck",
267
+ "model_type": "resnet",
268
+ "num_channels": 3,
269
+ "out_features": [
270
+ "stage4"
271
+ ],
272
+ "out_indices": [
273
+ 4
274
+ ],
275
+ "problem_type": "single_label_classification",
276
+ "stage_names": [
277
+ "stem",
278
+ "stage1",
279
+ "stage2",
280
+ "stage3",
281
+ "stage4"
282
+ ],
283
+ "torch_dtype": "float32",
284
+ "transformers_version": "4.40.2"
285
+ }
config.toml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [training_args]
2
+ output_dir="/Users/andrewmayes/Openclassroom/CanineNet/code/"
3
+ evaluation_strategy="steps"
4
+ save_strategy="steps"
5
+ learning_rate=5e-5
6
+ #per_device_train_batch_size=32 # 512
7
+ #per_device_eval_batch_size=32 # 512
8
+ # num_train_epochs=5,
9
+ eval_delay=0 # 50
10
+ eval_steps=0.01
11
+ #eval_accumulation_steps
12
+ gradient_accumulation_steps=4
13
+ gradient_checkpointing=false#true
14
+ optim="adafactor"
15
+ max_steps=1000 # 100
16
+ #logging_dir=""
17
+ #log_level="error"
18
+ load_best_model_at_end=true
19
+ metric_for_best_model="f1"
20
+ greater_is_better=true
21
+ #use_mps_device=true
22
+ logging_steps=0.01
23
+ save_steps=0.01
24
+ #auto_find_batch_size=true
25
+ report_to="mlflow"
26
+ save_total_limit=2
27
+ #hub_model_id="amaye15/SwinV2-Base-Document-Classifier"
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05a149ec7944715556aec826546223b954ad2fb4f192f2a211384b753f192142
3
+ size 95270232
preprocessor_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "crop_pct",
7
+ "resample",
8
+ "do_rescale",
9
+ "rescale_factor",
10
+ "do_normalize",
11
+ "image_mean",
12
+ "image_std",
13
+ "return_tensors",
14
+ "data_format",
15
+ "input_data_format"
16
+ ],
17
+ "crop_pct": 0.875,
18
+ "do_normalize": true,
19
+ "do_rescale": true,
20
+ "do_resize": true,
21
+ "image_mean": [
22
+ 0.485,
23
+ 0.456,
24
+ 0.406
25
+ ],
26
+ "image_processor_type": "ConvNextImageProcessor",
27
+ "image_std": [
28
+ 0.229,
29
+ 0.224,
30
+ 0.225
31
+ ],
32
+ "resample": 3,
33
+ "rescale_factor": 0.00392156862745098,
34
+ "size": {
35
+ "shortest_edge": 224
36
+ }
37
+ }
train.ipynb ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {},
6
+ "source": [
7
+ "# Install"
8
+ ]
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 1,
13
+ "metadata": {},
14
+ "outputs": [
15
+ {
16
+ "name": "stdout",
17
+ "output_type": "stream",
18
+ "text": [
19
+ "Requirement already satisfied: uv in /Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages (0.1.42)\n",
20
+ "Note: you may need to restart the kernel to use updated packages.\n"
21
+ ]
22
+ }
23
+ ],
24
+ "source": [
25
+ "%pip install uv"
26
+ ]
27
+ },
28
+ {
29
+ "cell_type": "code",
30
+ "execution_count": 2,
31
+ "metadata": {},
32
+ "outputs": [
33
+ {
34
+ "name": "stdout",
35
+ "output_type": "stream",
36
+ "text": [
37
+ "\u001b[2mAudited \u001b[1m12 packages\u001b[0m in 15ms\u001b[0m\n"
38
+ ]
39
+ }
40
+ ],
41
+ "source": [
42
+ "!uv pip install dagshub setuptools accelerate toml torch torchvision transformers mlflow datasets ipywidgets python-dotenv evaluate"
43
+ ]
44
+ },
45
+ {
46
+ "cell_type": "markdown",
47
+ "metadata": {},
48
+ "source": [
49
+ "# Setup"
50
+ ]
51
+ },
52
+ {
53
+ "cell_type": "code",
54
+ "execution_count": 3,
55
+ "metadata": {},
56
+ "outputs": [
57
+ {
58
+ "data": {
59
+ "text/html": [
60
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Initialized MLflow to track repo <span style=\"color: #008000; text-decoration-color: #008000\">\"amaye15/CanineNet\"</span>\n",
61
+ "</pre>\n"
62
+ ],
63
+ "text/plain": [
64
+ "Initialized MLflow to track repo \u001b[32m\"amaye15/CanineNet\"\u001b[0m\n"
65
+ ]
66
+ },
67
+ "metadata": {},
68
+ "output_type": "display_data"
69
+ },
70
+ {
71
+ "data": {
72
+ "text/html": [
73
+ "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">Repository amaye15/CanineNet initialized!\n",
74
+ "</pre>\n"
75
+ ],
76
+ "text/plain": [
77
+ "Repository amaye15/CanineNet initialized!\n"
78
+ ]
79
+ },
80
+ "metadata": {},
81
+ "output_type": "display_data"
82
+ }
83
+ ],
84
+ "source": [
85
+ "import os\n",
86
+ "import toml\n",
87
+ "import torch\n",
88
+ "import mlflow\n",
89
+ "import dagshub\n",
90
+ "import datasets\n",
91
+ "import evaluate\n",
92
+ "from dotenv import load_dotenv\n",
93
+ "from torchvision.transforms import v2\n",
94
+ "from transformers import AutoImageProcessor, AutoModelForImageClassification, TrainingArguments, Trainer\n",
95
+ "\n",
96
+ "ENV_PATH = \"/Users/andrewmayes/Openclassroom/CanineNet/.env\"\n",
97
+ "CONFIG_PATH = \"/Users/andrewmayes/Openclassroom/CanineNet/code/config.toml\"\n",
98
+ "CONFIG = toml.load(CONFIG_PATH)\n",
99
+ "\n",
100
+ "load_dotenv(ENV_PATH)\n",
101
+ "\n",
102
+ "dagshub.init(repo_name=os.environ['MLFLOW_TRACKING_PROJECTNAME'], repo_owner=os.environ['MLFLOW_TRACKING_USERNAME'], mlflow=True, dvc=True)\n",
103
+ "\n",
104
+ "os.environ['MLFLOW_TRACKING_USERNAME'] = \"amaye15\"\n",
105
+ "\n",
106
+ "mlflow.set_tracking_uri(f'https://dagshub.com/' + os.environ['MLFLOW_TRACKING_USERNAME']\n",
107
+ " + '/' + os.environ['MLFLOW_TRACKING_PROJECTNAME'] + '.mlflow')\n",
108
+ "\n",
109
+ "CREATE_DATASET = True\n",
110
+ "ORIGINAL_DATASET = \"Alanox/stanford-dogs\"\n",
111
+ "MODIFIED_DATASET = \"amaye15/stanford-dogs\"\n",
112
+ "REMOVE_COLUMNS = [\"name\", \"annotations\"]\n",
113
+ "RENAME_COLUMNS = {\"image\":\"pixel_values\", \"target\":\"label\"}\n",
114
+ "SPLIT = 0.2\n",
115
+ "\n",
116
+ "METRICS = [\"accuracy\", \"f1\", \"precision\", \"recall\"]\n",
117
+ "# MODELS = 'google/vit-base-patch16-224'\n",
118
+ "# MODELS = \"google/siglip-base-patch16-224\"\n",
119
+ "\n"
120
+ ]
121
+ },
122
+ {
123
+ "cell_type": "markdown",
124
+ "metadata": {},
125
+ "source": [
126
+ "# Dataset"
127
+ ]
128
+ },
129
+ {
130
+ "cell_type": "code",
131
+ "execution_count": 4,
132
+ "metadata": {},
133
+ "outputs": [
134
+ {
135
+ "name": "stdout",
136
+ "output_type": "stream",
137
+ "text": [
138
+ "Affenpinscher: 0\n",
139
+ "Afghan Hound: 1\n",
140
+ "African Hunting Dog: 2\n",
141
+ "Airedale: 3\n",
142
+ "American Staffordshire Terrier: 4\n",
143
+ "Appenzeller: 5\n",
144
+ "Australian Terrier: 6\n",
145
+ "Basenji: 7\n",
146
+ "Basset: 8\n",
147
+ "Beagle: 9\n",
148
+ "Bedlington Terrier: 10\n",
149
+ "Bernese Mountain Dog: 11\n",
150
+ "Black And Tan Coonhound: 12\n",
151
+ "Blenheim Spaniel: 13\n",
152
+ "Bloodhound: 14\n",
153
+ "Bluetick: 15\n",
154
+ "Border Collie: 16\n",
155
+ "Border Terrier: 17\n",
156
+ "Borzoi: 18\n",
157
+ "Boston Bull: 19\n",
158
+ "Bouvier Des Flandres: 20\n",
159
+ "Boxer: 21\n",
160
+ "Brabancon Griffon: 22\n",
161
+ "Briard: 23\n",
162
+ "Brittany Spaniel: 24\n",
163
+ "Bull Mastiff: 25\n",
164
+ "Cairn: 26\n",
165
+ "Cardigan: 27\n",
166
+ "Chesapeake Bay Retriever: 28\n",
167
+ "Chihuahua: 29\n",
168
+ "Chow: 30\n",
169
+ "Clumber: 31\n",
170
+ "Cocker Spaniel: 32\n",
171
+ "Collie: 33\n",
172
+ "Curly Coated Retriever: 34\n",
173
+ "Dandie Dinmont: 35\n",
174
+ "Dhole: 36\n",
175
+ "Dingo: 37\n",
176
+ "Doberman: 38\n",
177
+ "English Foxhound: 39\n",
178
+ "English Setter: 40\n",
179
+ "English Springer: 41\n",
180
+ "Entlebucher: 42\n",
181
+ "Eskimo Dog: 43\n",
182
+ "Flat Coated Retriever: 44\n",
183
+ "French Bulldog: 45\n",
184
+ "German Shepherd: 46\n",
185
+ "German Short Haired Pointer: 47\n",
186
+ "Giant Schnauzer: 48\n",
187
+ "Golden Retriever: 49\n",
188
+ "Gordon Setter: 50\n",
189
+ "Great Dane: 51\n",
190
+ "Great Pyrenees: 52\n",
191
+ "Greater Swiss Mountain Dog: 53\n",
192
+ "Groenendael: 54\n",
193
+ "Ibizan Hound: 55\n",
194
+ "Irish Setter: 56\n",
195
+ "Irish Terrier: 57\n",
196
+ "Irish Water Spaniel: 58\n",
197
+ "Irish Wolfhound: 59\n",
198
+ "Italian Greyhound: 60\n",
199
+ "Japanese Spaniel: 61\n",
200
+ "Keeshond: 62\n",
201
+ "Kelpie: 63\n",
202
+ "Kerry Blue Terrier: 64\n",
203
+ "Komondor: 65\n",
204
+ "Kuvasz: 66\n",
205
+ "Labrador Retriever: 67\n",
206
+ "Lakeland Terrier: 68\n",
207
+ "Leonberg: 69\n",
208
+ "Lhasa: 70\n",
209
+ "Malamute: 71\n",
210
+ "Malinois: 72\n",
211
+ "Maltese Dog: 73\n",
212
+ "Mexican Hairless: 74\n",
213
+ "Miniature Pinscher: 75\n",
214
+ "Miniature Poodle: 76\n",
215
+ "Miniature Schnauzer: 77\n",
216
+ "Newfoundland: 78\n",
217
+ "Norfolk Terrier: 79\n",
218
+ "Norwegian Elkhound: 80\n",
219
+ "Norwich Terrier: 81\n",
220
+ "Old English Sheepdog: 82\n",
221
+ "Otterhound: 83\n",
222
+ "Papillon: 84\n",
223
+ "Pekinese: 85\n",
224
+ "Pembroke: 86\n",
225
+ "Pomeranian: 87\n",
226
+ "Pug: 88\n",
227
+ "Redbone: 89\n",
228
+ "Rhodesian Ridgeback: 90\n",
229
+ "Rottweiler: 91\n",
230
+ "Saint Bernard: 92\n",
231
+ "Saluki: 93\n",
232
+ "Samoyed: 94\n",
233
+ "Schipperke: 95\n",
234
+ "Scotch Terrier: 96\n",
235
+ "Scottish Deerhound: 97\n",
236
+ "Sealyham Terrier: 98\n",
237
+ "Shetland Sheepdog: 99\n",
238
+ "Shih Tzu: 100\n",
239
+ "Siberian Husky: 101\n",
240
+ "Silky Terrier: 102\n",
241
+ "Soft Coated Wheaten Terrier: 103\n",
242
+ "Staffordshire Bullterrier: 104\n",
243
+ "Standard Poodle: 105\n",
244
+ "Standard Schnauzer: 106\n",
245
+ "Sussex Spaniel: 107\n",
246
+ "Tibetan Mastiff: 108\n",
247
+ "Tibetan Terrier: 109\n",
248
+ "Toy Poodle: 110\n",
249
+ "Toy Terrier: 111\n",
250
+ "Vizsla: 112\n",
251
+ "Walker Hound: 113\n",
252
+ "Weimaraner: 114\n",
253
+ "Welsh Springer Spaniel: 115\n",
254
+ "West Highland White Terrier: 116\n",
255
+ "Whippet: 117\n",
256
+ "Wire Haired Fox Terrier: 118\n",
257
+ "Yorkshire Terrier: 119\n"
258
+ ]
259
+ }
260
+ ],
261
+ "source": [
262
+ "if CREATE_DATASET:\n",
263
+ " ds = datasets.load_dataset(ORIGINAL_DATASET, token=os.getenv(\"HF_TOKEN\"), split=\"full\", trust_remote_code=True)\n",
264
+ " ds = ds.remove_columns(REMOVE_COLUMNS).rename_columns(RENAME_COLUMNS)\n",
265
+ "\n",
266
+ " labels = ds.select_columns(\"label\").to_pandas().sort_values(\"label\").get(\"label\").unique().tolist()\n",
267
+ " numbers = range(len(labels))\n",
268
+ " label2int = dict(zip(labels, numbers))\n",
269
+ " int2label = dict(zip(numbers, labels))\n",
270
+ "\n",
271
+ " for key, val in label2int.items():\n",
272
+ " print(f\"{key}: {val}\")\n",
273
+ "\n",
274
+ " ds = ds.class_encode_column(\"label\")\n",
275
+ " ds = ds.align_labels_with_mapping(label2int, \"label\")\n",
276
+ "\n",
277
+ " ds = ds.train_test_split(test_size=SPLIT, stratify_by_column = \"label\")\n",
278
+ " #ds.push_to_hub(MODIFIED_DATASET, token=os.getenv(\"HF_TOKEN\"))\n",
279
+ "\n",
280
+ " CONFIG[\"label2int\"] = str(label2int)\n",
281
+ " CONFIG[\"int2label\"] = str(int2label)\n",
282
+ "\n",
283
+ " # with open(\"output.toml\", \"w\") as toml_file:\n",
284
+ " # toml.dump(toml.dumps(CONFIG), toml_file)\n",
285
+ "\n",
286
+ " #ds = datasets.load_dataset(MODIFIED_DATASET, token=os.getenv(\"HF_TOKEN\"), trust_remote_code=True, streaming=True)"
287
+ ]
288
+ },
289
+ {
290
+ "cell_type": "code",
291
+ "execution_count": 5,
292
+ "metadata": {},
293
+ "outputs": [
294
+ {
295
+ "name": "stderr",
296
+ "output_type": "stream",
297
+ "text": [
298
+ "/Users/andrewmayes/Openclassroom/CanineNet/env/lib/python3.12/site-packages/huggingface_hub/file_download.py:1132: FutureWarning: `resume_download` is deprecated and will be removed in version 1.0.0. Downloads always resume when possible. If you want to force a new download, use `force_download=True`.\n",
299
+ " warnings.warn(\n",
300
+ "Could not find image processor class in the image processor config or the model config. Loading based on pattern matching with the model's feature extractor configuration. Please open a PR/issue to update `preprocessor_config.json` to use `image_processor_type` instead of `feature_extractor_type`. This warning will be removed in v4.40.\n",
301
+ "Some weights of ResNetForImageClassification were not initialized from the model checkpoint at microsoft/resnet-50 and are newly initialized because the shapes did not match:\n",
302
+ "- classifier.1.bias: found shape torch.Size([1000]) in the checkpoint and torch.Size([120]) in the model instantiated\n",
303
+ "- classifier.1.weight: found shape torch.Size([1000, 2048]) in the checkpoint and torch.Size([120, 2048]) in the model instantiated\n",
304
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
305
+ "max_steps is given, it will override any value given in num_train_epochs\n"
306
+ ]
307
+ },
308
+ {
309
+ "data": {
310
+ "application/vnd.jupyter.widget-view+json": {
311
+ "model_id": "5d2082be56df4467893881fa27d9e334",
312
+ "version_major": 2,
313
+ "version_minor": 0
314
+ },
315
+ "text/plain": [
316
+ " 0%| | 0/1000 [00:00<?, ?it/s]"
317
+ ]
318
+ },
319
+ "metadata": {},
320
+ "output_type": "display_data"
321
+ }
322
+ ],
323
+ "source": [
324
+ "metrics = {metric: evaluate.load(metric) for metric in METRICS}\n",
325
+ "\n",
326
+ "\n",
327
+ "# for lr in [5e-3, 5e-4, 5e-5]: # 5e-5\n",
328
+ "# for batch in [64]: # 32\n",
329
+ "# for model_name in [\"google/vit-base-patch16-224\", \"microsoft/swinv2-base-patch4-window16-256\", \"google/siglip-base-patch16-224\"]: # \"facebook/dinov2-base\"\n",
330
+ "\n",
331
+ "lr = 5e-3\n",
332
+ "batch = 32\n",
333
+ "model_name = \"microsoft/resnet-50\"\n",
334
+ "\n",
335
+ "image_processor = AutoImageProcessor.from_pretrained(model_name)\n",
336
+ "model = AutoModelForImageClassification.from_pretrained(\n",
337
+ "model_name,\n",
338
+ "num_labels=len(label2int),\n",
339
+ "id2label=int2label,\n",
340
+ "label2id=label2int,\n",
341
+ "ignore_mismatched_sizes=True,\n",
342
+ ")\n",
343
+ "\n",
344
+ "# Then, in your transformations:\n",
345
+ "def train_transform(examples, num_ops=10, magnitude=9, num_magnitude_bins=31):\n",
346
+ "\n",
347
+ " transformation = v2.Compose(\n",
348
+ " [\n",
349
+ " v2.RandAugment(\n",
350
+ " num_ops=num_ops,\n",
351
+ " magnitude=magnitude,\n",
352
+ " num_magnitude_bins=num_magnitude_bins,\n",
353
+ " )\n",
354
+ " ]\n",
355
+ " )\n",
356
+ " # Ensure each image has three dimensions (in this case, ensure it's RGB)\n",
357
+ " examples[\"pixel_values\"] = [\n",
358
+ " image.convert(\"RGB\") for image in examples[\"pixel_values\"]\n",
359
+ " ]\n",
360
+ " # Apply transformations\n",
361
+ " examples[\"pixel_values\"] = [\n",
362
+ " image_processor(transformation(image), return_tensors=\"pt\")[\n",
363
+ " \"pixel_values\"\n",
364
+ " ].squeeze()\n",
365
+ " for image in examples[\"pixel_values\"]\n",
366
+ " ]\n",
367
+ " return examples\n",
368
+ "\n",
369
+ "\n",
370
+ "def test_transform(examples):\n",
371
+ " # Ensure each image is RGB\n",
372
+ " examples[\"pixel_values\"] = [\n",
373
+ " image.convert(\"RGB\") for image in examples[\"pixel_values\"]\n",
374
+ " ]\n",
375
+ " # Apply processing\n",
376
+ " examples[\"pixel_values\"] = [\n",
377
+ " image_processor(image, return_tensors=\"pt\")[\"pixel_values\"].squeeze()\n",
378
+ " for image in examples[\"pixel_values\"]\n",
379
+ " ]\n",
380
+ " return examples\n",
381
+ "\n",
382
+ "\n",
383
+ "def compute_metrics(eval_pred):\n",
384
+ " predictions, labels = eval_pred\n",
385
+ " # predictions = np.argmax(logits, axis=-1)\n",
386
+ " results = {}\n",
387
+ " for key, val in metrics.items():\n",
388
+ " if \"accuracy\" == key:\n",
389
+ " result = next(\n",
390
+ " iter(val.compute(predictions=predictions, references=labels).items())\n",
391
+ " )\n",
392
+ " if \"accuracy\" != key:\n",
393
+ " result = next(\n",
394
+ " iter(\n",
395
+ " val.compute(\n",
396
+ " predictions=predictions, references=labels, average=\"macro\"\n",
397
+ " ).items()\n",
398
+ " )\n",
399
+ " )\n",
400
+ " results[result[0]] = result[1]\n",
401
+ " return results\n",
402
+ "\n",
403
+ "\n",
404
+ "def collate_fn(examples):\n",
405
+ " pixel_values = torch.stack([example[\"pixel_values\"] for example in examples])\n",
406
+ " labels = torch.tensor([example[\"label\"] for example in examples])\n",
407
+ " return {\"pixel_values\": pixel_values, \"labels\": labels}\n",
408
+ "\n",
409
+ "\n",
410
+ "def preprocess_logits_for_metrics(logits, labels):\n",
411
+ " \"\"\"\n",
412
+ " Original Trainer may have a memory leak.\n",
413
+ " This is a workaround to avoid storing too many tensors that are not needed.\n",
414
+ " \"\"\"\n",
415
+ " pred_ids = torch.argmax(logits, dim=-1)\n",
416
+ " return pred_ids\n",
417
+ "\n",
418
+ "ds[\"train\"].set_transform(train_transform)\n",
419
+ "ds[\"test\"].set_transform(test_transform)\n",
420
+ "\n",
421
+ "training_args = TrainingArguments(**CONFIG[\"training_args\"])\n",
422
+ "training_args.per_device_train_batch_size = batch\n",
423
+ "training_args.per_device_eval_batch_size = batch\n",
424
+ "training_args.hub_model_id = f\"amaye15/{model_name.replace('/','-')}-batch{batch}-lr{lr}-standford-dogs\"\n",
425
+ "\n",
426
+ "mlflow.start_run(run_name=f\"{model_name.replace('/','-')}-batch{batch}-lr{lr}\")\n",
427
+ "\n",
428
+ "trainer = Trainer(\n",
429
+ " model=model,\n",
430
+ " args=training_args,\n",
431
+ " train_dataset=ds[\"train\"],\n",
432
+ " eval_dataset=ds[\"test\"],\n",
433
+ " tokenizer=image_processor,\n",
434
+ " data_collator=collate_fn,\n",
435
+ " compute_metrics=compute_metrics,\n",
436
+ " # callbacks=[early_stopping_callback],\n",
437
+ " preprocess_logits_for_metrics=preprocess_logits_for_metrics,\n",
438
+ ")\n",
439
+ "\n",
440
+ "# Train the model\n",
441
+ "trainer.train()\n",
442
+ "\n",
443
+ "trainer.push_to_hub()\n",
444
+ "\n",
445
+ "mlflow.end_run()"
446
+ ]
447
+ }
448
+ ],
449
+ "metadata": {
450
+ "kernelspec": {
451
+ "display_name": "env",
452
+ "language": "python",
453
+ "name": "python3"
454
+ },
455
+ "language_info": {
456
+ "codemirror_mode": {
457
+ "name": "ipython",
458
+ "version": 3
459
+ },
460
+ "file_extension": ".py",
461
+ "mimetype": "text/x-python",
462
+ "name": "python",
463
+ "nbconvert_exporter": "python",
464
+ "pygments_lexer": "ipython3",
465
+ "version": "3.12.3"
466
+ }
467
+ },
468
+ "nbformat": 4,
469
+ "nbformat_minor": 2
470
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3d78fe7e384da50a7fd018fd0715177c5cbfbcae3417c7ce0956c33b1571350
3
+ size 5112