|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from transformers import PreTrainedModel |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.models.auto import AutoModelForCausalLM |
|
|
|
from olmo.config import ModelConfig |
|
from olmo.model import Olmo |
|
|
|
from .configuration_olmo import OLMoConfig |
|
|
|
|
|
def create_model_config_from_pretrained_config(config: OLMoConfig): |
|
""" |
|
Utility function |
|
""" |
|
|
|
kwargs = {} |
|
for key in ModelConfig.__match_args__: |
|
kwargs[key] = getattr(config, key) |
|
|
|
model_config = ModelConfig(**kwargs) |
|
return model_config |
|
|
|
|
|
class OLMoForCausalLM(PreTrainedModel): |
|
""" |
|
Extremely barebones HF model wrapper. |
|
""" |
|
|
|
config_class = OLMoConfig |
|
base_model_prefix = "model" |
|
_no_split_modules = ["OLMoBlock"] |
|
|
|
def __init__(self, config: OLMoConfig, model: Optional[Olmo] = None, init_params: bool = False): |
|
super().__init__(config) |
|
|
|
if not model: |
|
model_config = create_model_config_from_pretrained_config(config) |
|
|
|
model_config.init_device = "cpu" |
|
self.model = Olmo(model_config, init_params=init_params) |
|
else: |
|
self.model = model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
if use_cache is None: |
|
use_cache = self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model.forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
) |
|
|
|
logits = outputs.logits |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.embedding_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.attn_key_values, |
|
) |
|
|
|
def can_generate(self) -> bool: |
|
return True |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs |
|
): |
|
if past_key_values: |
|
|
|
input_ids = input_ids[:, -1:] |
|
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values} |
|
|
|
model_inputs.update(kwargs) |
|
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache) |
|
return model_inputs |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_input_embeddings(self) -> torch.nn.Module: |
|
return self.model.transformer.wte |
|
|
|
def set_input_embeddings(self, value: torch.nn.Module): |
|
self.model.transformer.wte = value |
|
|
|
def get_output_embeddings(self): |
|
if self.config.weight_tying: |
|
return self.model.transformer.wte |
|
else: |
|
return self.model.transformer.ff_out |
|
|
|
def set_output_embeddings(self, value: torch.nn.Module): |
|
if self.config.weight_tying: |
|
self.model.transformer.wte = value |
|
else: |
|
self.model.transformer.ff_out = value |
|
|
|
def tie_weights(self): |
|
if self.config.weight_tying: |
|
self.model.transformer.ff_out = self.model.transformer.wte |
|
|
|
|
|
|
|
AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM) |
|
|