--- license: apache-2.0 datasets: - imagenet-1k metrics: - accuracy tags: - RyzenAI - vision - classification - pytorch --- # ESE_VoVNet39b Quantized ESE_VoVNet39b model that could be supported by [AMD Ryzen AI](https://ryzenai.docs.amd.com/en/latest/). ## Model description VoVNet was first introduced in the paper [An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection](https://arxiv.org/abs/1904.09730). Pretrained on ImageNet-1k in timm by Ross Wightman using RandAugment RA recipe. The model implementation is from [timm](https://huggingface.co/timm/ese_vovnet39b.ra_in1k). ## How to use ### Installation Follow [Ryzen AI Installation](https://ryzenai.docs.amd.com/en/latest/inst.html) to prepare the environment for Ryzen AI. Run the following script to install pre-requisites for this model. ```bash pip install -r requirements.txt ``` ### Data Preparation Follow [ImageNet](https://huggingface.co/datasets/imagenet-1k) to prepare dataset. ### Model Evaluation ```python python eval_onnx.py --onnx_model ese_vovnet39b_int.onnx --ipu --provider_config Path\To\vaip_config.json --data_dir /Path/To/Your/Dataset ``` ### Performance |Metric |Accuracy on IPU| | :----: | :----: | |Top1/Top5| 78.96% / 94.53%| ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ``` ```bibtex @inproceedings{lee2019energy, title = {An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection}, author = {Lee, Youngwan and Hwang, Joong-won and Lee, Sangrok and Bae, Yuseok and Park, Jongyoul}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops}, year = {2019} } ```