File size: 7,900 Bytes
ff1446e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import numpy as np
import cv2
from itertools import product as product
from math import ceil
import torch
import torch.nn.functional as F
class PriorBox(object):
def __init__(self, cfg, image_size=None, phase="train"):
super(PriorBox, self).__init__()
self.min_sizes = cfg["min_sizes"]
self.steps = cfg["steps"]
self.clip = cfg["clip"]
self.image_size = image_size
self.feature_maps = [
[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)]
for step in self.steps
]
def forward(self):
anchors = []
for k, f in enumerate(self.feature_maps):
min_sizes = self.min_sizes[k]
for i, j in product(range(f[0]), range(f[1])):
for min_size in min_sizes:
s_kx = min_size / self.image_size[1]
s_ky = min_size / self.image_size[0]
dense_cx = [
x * self.steps[k] / self.image_size[1] for x in [j + 0.5]
]
dense_cy = [
y * self.steps[k] / self.image_size[0] for y in [i + 0.5]
]
for cy, cx in product(dense_cy, dense_cx):
anchors += [cx, cy, s_kx, s_ky]
# back to torch land
output = torch.Tensor(anchors).view(-1, 4)
if self.clip:
output.clamp_(max=1, min=0)
return output
def py_cpu_nms(dets, thresh):
"""Pure Python NMS baseline.
Args:
dets: detections before nms
thresh: nms threshold
Return:
keep: index after nms
"""
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(ovr <= thresh)[0]
order = order[inds + 1]
return keep
def decode(loc, priors, variances):
"""Decode locations from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
loc (tensor): location predictions for loc layers,
Shape: [num_priors,4]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded bounding box predictions
"""
boxes = torch.cat(
(
priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1]),
),
1,
)
boxes[:, :2] -= boxes[:, 2:] / 2
boxes[:, 2:] += boxes[:, :2]
return boxes
def decode_landm(pre, priors, variances):
"""Decode landm from predictions using priors to undo
the encoding we did for offset regression at train time.
Args:
pre (tensor): landm predictions for loc layers,
Shape: [num_priors,10]
priors (tensor): Prior boxes in center-offset form.
Shape: [num_priors,4].
variances: (list[float]) Variances of priorboxes
Return:
decoded landm predictions
"""
landms = torch.cat(
(
priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
),
dim=1,
)
return landms
def pad_image(image, h, w, size, padvalue):
pad_image = image.copy()
pad_h = max(size[0] - h, 0)
pad_w = max(size[1] - w, 0)
if pad_h > 0 or pad_w > 0:
pad_image = cv2.copyMakeBorder(image, 0, pad_h, 0,
pad_w, cv2.BORDER_CONSTANT,
value=padvalue)
return pad_image
def resize_image(image, re_size, keep_ratio=True):
"""Resize image
Args:
image: origin image
re_size: resize scale
keep_ratio: keep aspect ratio. Default is set to true.
Returns:
re_image: resized image
resize_ratio: resize ratio
"""
if not keep_ratio:
re_image = cv2.resize(image, (re_size[0], re_size[1])).astype('float32')
return re_image, 0, 0
ratio = re_size[0] * 1.0 / re_size[1]
h, w = image.shape[0:2]
if h * 1.0 / w <= ratio:
resize_ratio = re_size[1] * 1.0 / w
re_h, re_w = int(h * resize_ratio), re_size[1]
else:
resize_ratio = re_size[0] * 1.0 / h
re_h, re_w = re_size[0], int(w * resize_ratio)
re_image = cv2.resize(image, (re_w, re_h)).astype('float32')
re_image = pad_image(re_image, re_h, re_w, re_size, (0.0, 0.0, 0.0))
return re_image, resize_ratio
def preprocess(img_raw, input_size, device):
"""preprocess
Args:
img_raw: origin image
Returns:
img: resized image
scale: resized image scale
resize: resize ratio
"""
img = np.float32(img_raw)
# resize image
img, resize = resize_image(img, input_size)
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
img = img.numpy()
scale = scale.to(device)
return img, scale, resize
def postprocess(cfg, img, outputs, scale, resize, confidence_threshold, nms_threshold, device):
"""post_process
Args:
img: resized image
outputs: forward outputs
scale: resized image scale
resize: resize ratio
confidence_threshold: confidence threshold
nms_threshold: non-maximum suppression threshold
Returns:
detetcion results
"""
_, _, im_height, im_width= img.shape
loc = torch.from_numpy(outputs[0])
conf = torch.from_numpy(outputs[1])
landms = torch.from_numpy(outputs[2])
# softmax
conf = F.softmax(conf, dim=-1)
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
boxes = decode(loc.squeeze(0), prior_data, cfg["variance"])
boxes = boxes * scale / resize
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landms = decode_landm(landms.squeeze(0), prior_data, cfg["variance"])
scale1 = torch.Tensor(
[img.shape[3], img.shape[2], img.shape[3], img.shape[2], img.shape[3],
img.shape[2], img.shape[3], img.shape[2], img.shape[3], img.shape[2],]
)
scale1 = scale1.to(device)
landms = landms * scale1 / resize
landms = landms.cpu().numpy()
# ignore low scores
inds = np.where(scores > confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
# keep top-K before NMS
order = scores.argsort()[::-1]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
# do NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, nms_threshold)
dets = dets[keep, :]
landms = landms[keep]
dets = np.concatenate((dets, landms), axis=1)
return dets |