yolov8m / general_json2yolo.py
zhengrongzhang's picture
init model
e6c79f4
raw
history blame
6.8 kB
import json
from collections import defaultdict
from pathlib import Path
from tqdm import tqdm
import numpy as np
import sys
import pathlib
CURRENT_DIR = pathlib.Path(__file__).parent
sys.path.append(str(CURRENT_DIR))
def make_dirs(dir="./datasets/coco"):
# Create folders
dir = Path(dir)
for p in [dir / "labels"]:
p.mkdir(parents=True, exist_ok=True) # make dir
return dir
def coco91_to_coco80_class(): # converts 80-index (val2014) to 91-index (paper)
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
x = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, None, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, None, 24, 25, None,
None, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, None, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, None, 60, None, None, 61, None, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
None, 73, 74, 75, 76, 77, 78, 79, None]
return x
def convert_coco_json(
json_dir="../coco/annotations/", use_segments=False, cls91to80=False
):
save_dir = make_dirs() # output directory
coco80 = coco91_to_coco80_class()
# Import json
for json_file in sorted(Path(json_dir).resolve().glob("*.json")):
if not str(json_file).endswith("instances_val2017.json"):
continue
fn = (
Path(save_dir) / "labels" / json_file.stem.replace("instances_", "")
) # folder name
fn.mkdir()
with open(json_file) as f:
data = json.load(f)
# Create image dict
images = {"%g" % x["id"]: x for x in data["images"]}
# Create image-annotations dict
imgToAnns = defaultdict(list)
for ann in data["annotations"]:
imgToAnns[ann["image_id"]].append(ann)
txt_file = open(Path(save_dir / "val2017").with_suffix(".txt"), "a")
# Write labels file
for img_id, anns in tqdm(imgToAnns.items(), desc=f"Annotations {json_file}"):
img = images["%g" % img_id]
h, w, f = img["height"], img["width"], img["file_name"]
bboxes = []
segments = []
txt_file.write(
"./images/" + "/".join(img["coco_url"].split("/")[-2:]) + "\n"
)
for ann in anns:
if ann["iscrowd"]:
continue
# The COCO box format is [top left x, top left y, width, height]
box = np.array(ann["bbox"], dtype=np.float64)
box[:2] += box[2:] / 2 # xy top-left corner to center
box[[0, 2]] /= w # normalize x
box[[1, 3]] /= h # normalize y
if box[2] <= 0 or box[3] <= 0: # if w <= 0 and h <= 0
continue
cls = (
coco80[ann["category_id"] - 1]
if cls91to80
else ann["category_id"] - 1
) # class
box = [cls] + box.tolist()
if box not in bboxes:
bboxes.append(box)
# Segments
if use_segments:
if len(ann["segmentation"]) > 1:
s = merge_multi_segment(ann["segmentation"])
s = (
(np.concatenate(s, axis=0) / np.array([w, h]))
.reshape(-1)
.tolist()
)
else:
s = [
j for i in ann["segmentation"] for j in i
] # all segments concatenated
s = (
(np.array(s).reshape(-1, 2) / np.array([w, h]))
.reshape(-1)
.tolist()
)
s = [cls] + s
if s not in segments:
segments.append(s)
# Write
with open((fn / f).with_suffix(".txt"), "a") as file:
for i in range(len(bboxes)):
line = (
*(segments[i] if use_segments else bboxes[i]),
) # cls, box or segments
file.write(("%g " * len(line)).rstrip() % line + "\n")
txt_file.close()
def min_index(arr1, arr2):
"""Find a pair of indexes with the shortest distance.
Args:
arr1: (N, 2).
arr2: (M, 2).
Return:
a pair of indexes(tuple).
"""
dis = ((arr1[:, None, :] - arr2[None, :, :]) ** 2).sum(-1)
return np.unravel_index(np.argmin(dis, axis=None), dis.shape)
def merge_multi_segment(segments):
"""Merge multi segments to one list.
Find the coordinates with min distance between each segment,
then connect these coordinates with one thin line to merge all
segments into one.
Args:
segments(List(List)): original segmentations in coco's json file.
like [segmentation1, segmentation2,...],
each segmentation is a list of coordinates.
"""
s = []
segments = [np.array(i).reshape(-1, 2) for i in segments]
idx_list = [[] for _ in range(len(segments))]
# record the indexes with min distance between each segment
for i in range(1, len(segments)):
idx1, idx2 = min_index(segments[i - 1], segments[i])
idx_list[i - 1].append(idx1)
idx_list[i].append(idx2)
# use two round to connect all the segments
for k in range(2):
# forward connection
if k == 0:
for i, idx in enumerate(idx_list):
# middle segments have two indexes
# reverse the index of middle segments
if len(idx) == 2 and idx[0] > idx[1]:
idx = idx[::-1]
segments[i] = segments[i][::-1, :]
segments[i] = np.roll(segments[i], -idx[0], axis=0)
segments[i] = np.concatenate([segments[i], segments[i][:1]])
# deal with the first segment and the last one
if i in [0, len(idx_list) - 1]:
s.append(segments[i])
else:
idx = [0, idx[1] - idx[0]]
s.append(segments[i][idx[0] : idx[1] + 1])
else:
for i in range(len(idx_list) - 1, -1, -1):
if i not in [0, len(idx_list) - 1]:
idx = idx_list[i]
nidx = abs(idx[1] - idx[0])
s.append(segments[i][nidx:])
return s
if __name__ == "__main__":
convert_coco_json(
"./datasets/coco/annotations", # directory with *.json
use_segments=True,
cls91to80=True,
)