wangfangyuan commited on
Commit
b551795
β€’
1 Parent(s): e6c79f4

Upload 12 files

Browse files
Files changed (5) hide show
  1. README.md +4 -5
  2. onnx_eval.py +6 -2
  3. onnx_inference.py +7 -5
  4. utils.py +3 -2
  5. yolov8m_qat.onnx +2 -2
README.md CHANGED
@@ -1,7 +1,6 @@
1
  ---
2
  license: apache-2.0
3
  tags:
4
- - RyzenAI
5
  - object-detection
6
  - vision
7
  - YOLO
@@ -43,7 +42,7 @@ You can use the raw model for object detection. See the [model hub](https://hugg
43
 
44
  The dataset MSCOCO2017 contains 118287 images for training and 5000 images for validation.
45
 
46
- Download COCO dataset and create directories in your code like this:
47
  ```plain
48
  └── datasets
49
  └── coco
@@ -62,7 +61,7 @@ Download COCO dataset and create directories in your code like this:
62
  └── val2017.txt
63
  ```
64
  1. put the val2017 image folder under images directory or use a softlink
65
- 2. the labels folder and val2017.txt above are generate by **general_json2yolo.py**
66
  3. modify the coco.yaml like this:
67
  ```markdown
68
  path: /path/to/your/datasets/coco # dataset root dir
@@ -115,9 +114,9 @@ for batch in dataset:
115
 
116
  ### Performance
117
 
118
- |Metric |Accuracy on IPU|
119
  | :----: | :----: |
120
- |AP\@0.50:0.95|0.486|
121
 
122
 
123
  ```bibtex
 
1
  ---
2
  license: apache-2.0
3
  tags:
 
4
  - object-detection
5
  - vision
6
  - YOLO
 
42
 
43
  The dataset MSCOCO2017 contains 118287 images for training and 5000 images for validation.
44
 
45
+ Download COCO dataset and create directories like this:
46
  ```plain
47
  └── datasets
48
  └── coco
 
61
  └── val2017.txt
62
  ```
63
  1. put the val2017 image folder under images directory or use a softlink
64
+ 2. the labels folder and val2017.txt above are generate by **general_json2yolo.py**, you need put these file in to the datasets/coco folder
65
  3. modify the coco.yaml like this:
66
  ```markdown
67
  path: /path/to/your/datasets/coco # dataset root dir
 
114
 
115
  ### Performance
116
 
117
+ |Metric |Quantized onnx|
118
  | :----: | :----: |
119
+ |AP0.50:0.95|48.4|
120
 
121
 
122
  ```bibtex
onnx_eval.py CHANGED
@@ -78,8 +78,10 @@ class DetectionValidator:
78
  batch = self.preprocess(batch)
79
 
80
  # inference
81
- outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: batch["img"].cpu().numpy()})
82
- outputs = [torch.tensor(item).to(self.device) for item in outputs]
 
 
83
  preds = post_process(outputs)
84
 
85
  # pre-process predictions
@@ -95,6 +97,7 @@ class DetectionValidator:
95
  return stats
96
 
97
  def get_dataloader(self, dataset_path, batch_size):
 
98
  # calculate stride - check if model is initialized
99
  return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=32, names=self.data['names'], mode="val")[0]
100
 
@@ -178,6 +181,7 @@ class DetectionValidator:
178
  ratio_pad=batch["ratio_pad"][si]) # native-space labels
179
  labelsn = torch.cat((cls, tbox), 1) # native-space labels
180
  correct_bboxes = self._process_batch(predn, labelsn)
 
181
  self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
182
 
183
  # Save
 
78
  batch = self.preprocess(batch)
79
 
80
  # inference
81
+ # outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: batch["img"].cpu().numpy()})
82
+ outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: batch["img"].permute(0, 2, 3, 1).cpu().numpy()})
83
+ # outputs = [torch.tensor(item).to(self.device) for item in outputs]
84
+ outputs = [torch.tensor(item).permute(0, 3, 1, 2).to(self.device) for item in outputs]
85
  preds = post_process(outputs)
86
 
87
  # pre-process predictions
 
97
  return stats
98
 
99
  def get_dataloader(self, dataset_path, batch_size):
100
+ # TODO: manage splits differently
101
  # calculate stride - check if model is initialized
102
  return build_dataloader(self.args, batch_size, img_path=dataset_path, stride=32, names=self.data['names'], mode="val")[0]
103
 
 
181
  ratio_pad=batch["ratio_pad"][si]) # native-space labels
182
  labelsn = torch.cat((cls, tbox), 1) # native-space labels
183
  correct_bboxes = self._process_batch(predn, labelsn)
184
+ # TODO: maybe remove these `self.` arguments as they already are member variable
185
  self.stats.append((correct_bboxes, pred[:, 4], pred[:, 5], cls.squeeze(-1))) # (conf, pcls, tcls)
186
 
187
  # Save
onnx_inference.py CHANGED
@@ -78,21 +78,21 @@ def make_parser():
78
  "--model",
79
  type=str,
80
  default="./yolov8m_qat.onnx",
81
- help="input your onnx model.",
82
  )
83
  parser.add_argument(
84
  "-i",
85
  "--image_path",
86
  type=str,
87
  default='./demo.jpg',
88
- help="path to your input image.",
89
  )
90
  parser.add_argument(
91
  "-o",
92
  "--output_path",
93
  type=str,
94
  default='./demo_infer.jpg',
95
- help="path to your output directory.",
96
  )
97
  parser.add_argument(
98
  "--ipu", action='store_true', help='flag for ryzen ai'
@@ -133,8 +133,10 @@ if __name__ == '__main__':
133
  im = preprocess(im)
134
  if len(im.shape) == 3:
135
  im = im[None]
136
- outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: im.cpu().numpy()})
137
- outputs = [torch.tensor(item) for item in outputs]
 
 
138
  preds = post_process(outputs)
139
  preds = non_max_suppression(
140
  preds, 0.25, 0.7, agnostic=False, max_det=300, classes=None
 
78
  "--model",
79
  type=str,
80
  default="./yolov8m_qat.onnx",
81
+ help="Input your onnx model.",
82
  )
83
  parser.add_argument(
84
  "-i",
85
  "--image_path",
86
  type=str,
87
  default='./demo.jpg',
88
+ help="Path to your input image.",
89
  )
90
  parser.add_argument(
91
  "-o",
92
  "--output_path",
93
  type=str,
94
  default='./demo_infer.jpg',
95
+ help="Path to your output directory.",
96
  )
97
  parser.add_argument(
98
  "--ipu", action='store_true', help='flag for ryzen ai'
 
133
  im = preprocess(im)
134
  if len(im.shape) == 3:
135
  im = im[None]
136
+ # outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: im.cpu().numpy()})
137
+ # outputs = [torch.tensor(item) for item in outputs]
138
+ outputs = onnx_model.run(None, {onnx_model.get_inputs()[0].name: im.permute(0, 2, 3, 1).cpu().numpy()})
139
+ outputs = [torch.tensor(item).permute(0, 3, 1, 2) for item in outputs]
140
  preds = post_process(outputs)
141
  preds = non_max_suppression(
142
  preds, 0.25, 0.7, agnostic=False, max_det=300, classes=None
utils.py CHANGED
@@ -851,7 +851,7 @@ def build_dataloader(cfg, batch, img_path, stride=32, rect=False, names=None, ra
851
  imgsz=cfg.imgsz,
852
  batch_size=batch,
853
  augment=mode == "train", # augmentation
854
- hyp=cfg,
855
  rect=cfg.rect or rect, # rectangular batches
856
  cache=cfg.cache or None,
857
  single_cls=cfg.single_cls or False,
@@ -1170,6 +1170,7 @@ class Bboxes:
1170
  assert bboxes.shape[1] == 4
1171
  self.bboxes = bboxes
1172
  self.format = format
 
1173
 
1174
  def convert(self, format):
1175
  assert format in _formats
@@ -1576,7 +1577,7 @@ class YOLODataset(BaseDataset):
1576
  lb["segments"] = []
1577
  return labels
1578
 
1579
-
1580
  def build_transforms(self, hyp=None):
1581
  transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
1582
  transforms.append(
 
851
  imgsz=cfg.imgsz,
852
  batch_size=batch,
853
  augment=mode == "train", # augmentation
854
+ hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
855
  rect=cfg.rect or rect, # rectangular batches
856
  cache=cfg.cache or None,
857
  single_cls=cfg.single_cls or False,
 
1170
  assert bboxes.shape[1] == 4
1171
  self.bboxes = bboxes
1172
  self.format = format
1173
+ # self.normalized = normalized
1174
 
1175
  def convert(self, format):
1176
  assert format in _formats
 
1577
  lb["segments"] = []
1578
  return labels
1579
 
1580
+ # TODO: use hyp config to set all these augmentations
1581
  def build_transforms(self, hyp=None):
1582
  transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)])
1583
  transforms.append(
yolov8m_qat.onnx CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3b770e88b358ad24cc60e7b8bbc00b09bb1e0308f65f45cdcea2a1dfc1301077
3
- size 103874610
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:119038397368b01fee9ad8adcc62061babcf2e2dd417be1946d5bfccb07eb65f
3
+ size 103874987