|
from typing import Literal, Union |
|
|
|
def process_mmdet_results(mmdet_results: list, |
|
cat_id: int = 0, |
|
multi_person: bool = True) -> list: |
|
"""Process mmdet results, sort bboxes by area in descending order. |
|
|
|
Args: |
|
mmdet_results (list): |
|
Result of mmdet.apis.inference_detector |
|
when the input is a batch. |
|
Shape of the nested lists is |
|
(n_frame, n_category, n_human, 5). |
|
cat_id (int, optional): |
|
Category ID. This function will only select |
|
the selected category, and drop the others. |
|
Defaults to 0, ID of human category. |
|
multi_person (bool, optional): |
|
Whether to allow multi-person detection, which is |
|
slower than single-person. If false, the function |
|
only assure that the first person of each frame |
|
has the biggest bbox. |
|
Defaults to True. |
|
|
|
Returns: |
|
list: |
|
A list of detected bounding boxes. |
|
Shape of the nested lists is |
|
(n_frame, n_human, 5) |
|
and each bbox is (x, y, x, y, score). |
|
""" |
|
ret_list = [] |
|
only_max_arg = not multi_person |
|
|
|
cat_bboxes = mmdet_results[cat_id] |
|
|
|
sorted_bbox = qsort_bbox_list(cat_bboxes, only_max_arg) |
|
|
|
if only_max_arg: |
|
ret_list.append(sorted_bbox[0:1]) |
|
else: |
|
ret_list.append(sorted_bbox) |
|
return ret_list |
|
|
|
|
|
def qsort_bbox_list(bbox_list: list, |
|
only_max: bool = False, |
|
bbox_convention: Literal['xyxy', 'xywh'] = 'xyxy'): |
|
"""Sort a list of bboxes, by their area in pixel(W*H). |
|
|
|
Args: |
|
input_list (list): |
|
A list of bboxes. Each item is a list of (x1, y1, x2, y2) |
|
only_max (bool, optional): |
|
If True, only assure the max element at first place, |
|
others may not be well sorted. |
|
If False, return a well sorted descending list. |
|
Defaults to False. |
|
bbox_convention (str, optional): |
|
Bbox type, xyxy or xywh. Defaults to 'xyxy'. |
|
|
|
Returns: |
|
list: |
|
A sorted(maybe not so well) descending list. |
|
""" |
|
|
|
if len(bbox_list) <= 1: |
|
return bbox_list |
|
else: |
|
bigger_list = [] |
|
less_list = [] |
|
anchor_index = int(len(bbox_list) / 2) |
|
anchor_bbox = bbox_list[anchor_index] |
|
anchor_area = get_area_of_bbox(anchor_bbox, bbox_convention) |
|
for i in range(len(bbox_list)): |
|
if i == anchor_index: |
|
continue |
|
tmp_bbox = bbox_list[i] |
|
tmp_area = get_area_of_bbox(tmp_bbox, bbox_convention) |
|
if tmp_area >= anchor_area: |
|
bigger_list.append(tmp_bbox) |
|
else: |
|
less_list.append(tmp_bbox) |
|
if only_max: |
|
return qsort_bbox_list(bigger_list) + \ |
|
[anchor_bbox, ] + less_list |
|
else: |
|
return qsort_bbox_list(bigger_list) + \ |
|
[anchor_bbox, ] + qsort_bbox_list(less_list) |
|
|
|
def get_area_of_bbox( |
|
bbox: Union[list, tuple], |
|
bbox_convention: Literal['xyxy', 'xywh'] = 'xyxy') -> float: |
|
"""Get the area of a bbox_xyxy. |
|
|
|
Args: |
|
(Union[list, tuple]): |
|
A list of [x1, y1, x2, y2]. |
|
bbox_convention (str, optional): |
|
Bbox type, xyxy or xywh. Defaults to 'xyxy'. |
|
|
|
Returns: |
|
float: |
|
Area of the bbox(|y2-y1|*|x2-x1|). |
|
""" |
|
|
|
if bbox_convention == 'xyxy': |
|
return abs(bbox[2] - bbox[0]) * abs(bbox[3] - bbox[1]) |
|
elif bbox_convention == 'xywh': |
|
return abs(bbox[2] * bbox[3]) |
|
else: |
|
raise TypeError(f'Wrong bbox convention: {bbox_convention}') |
|
|
|
def calculate_iou(bbox1, bbox2): |
|
|
|
x1 = max(bbox1[0], bbox2[0]) |
|
y1 = max(bbox1[1], bbox2[1]) |
|
x2 = min(bbox1[2], bbox2[2]) |
|
y2 = min(bbox1[3], bbox2[3]) |
|
|
|
intersection_area = max(0, x2 - x1 + 1) * max(0, y2 - y1 + 1) |
|
|
|
bbox1_area = (bbox1[2] - bbox1[0] + 1) * (bbox1[3] - bbox1[1] + 1) |
|
bbox2_area = (bbox2[2] - bbox2[0] + 1) * (bbox2[3] - bbox2[1] + 1) |
|
|
|
union_area = bbox1_area + bbox2_area - intersection_area |
|
|
|
iou = intersection_area / union_area |
|
return iou |
|
|
|
|
|
def non_max_suppression(bboxes, iou_threshold): |
|
|
|
bboxes = sorted(bboxes, key=lambda x: x[4], reverse=True) |
|
|
|
|
|
selected_bboxes = [] |
|
|
|
|
|
while len(bboxes) > 0: |
|
current_bbox = bboxes[0] |
|
selected_bboxes.append(current_bbox) |
|
bboxes = bboxes[1:] |
|
|
|
remaining_bboxes = [] |
|
for bbox in bboxes: |
|
iou = calculate_iou(current_bbox, bbox) |
|
if iou < iou_threshold: |
|
remaining_bboxes.append(bbox) |
|
|
|
bboxes = remaining_bboxes |
|
|
|
return selected_bboxes |