File size: 5,872 Bytes
e116e32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, AdamW, get_linear_schedule_with_warmup, BitsAndBytesConfig
import transformers
import warnings
warnings.filterwarnings("ignore")
base_model_id= "google/gemma-2b"
torch.cuda.set_device(0)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print("Using device:", device)
# Load the jokes dataset
dataset = load_dataset("ysharma/short_jokes")
# Accessing the train split
train_data = dataset['train']
# Shuffle the dataset and select 20% of the data
twenty_percent_size = int(0.2 * len(train_data))
subset = train_data.shuffle(seed=42)[:twenty_percent_size]
import torch
print("Available devices:", torch.cuda.device_count())
print("Current device:", torch.cuda.current_device())
#accelerate
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig
fsdp_plugin = FullyShardedDataParallelPlugin(
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),
optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)
tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
padding_side="left",
add_eos_token=True,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
def formatting_func(example):
text = f"### The following is a note by Eevee the Dog: {example['note']}"
return text
def generate_and_tokenize_prompt(prompt):
return tokenizer(formatting_func(prompt))
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(base_model_id, quantization_config=bnb_config, device_map="auto")
def tokenize_function(examples):
return tokenizer(examples["Joke"], padding="max_length", truncation=True, max_length=50)
from datasets import load_dataset
dataset = load_dataset("ysharma/short_jokes")
# Shuffle the dataset and select 20% of the data
# print("train_data ",train_data, "subset ",subset)
train_test_split = dataset['train'].train_test_split(test_size=0.1)
train_data = train_test_split['train']
test_data = train_test_split['test']
# Now, tokenize the newly split datasets
tokenized_train_data = train_data.map(tokenize_function, batched=True)
tokenized_test_data = test_data.map(tokenize_function, batched=True)
eval_prompt = " why man are "
eval_tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
add_bos_token=True,
)
model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda")
model.eval()
with torch.no_grad():
print(eval_tokenizer.decode(model.generate(**model_input, max_new_tokens=50, repetition_penalty=1.15)[0], skip_special_tokens=True))
from peft import prepare_model_for_kbit_training,LoraConfig, get_peft_model
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
config = LoraConfig(
r=32,
lora_alpha=64,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
"lm_head",
],
bias="none",
lora_dropout=0.05, # Conventional
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print_trainable_parameters(model)
# if torch.cuda.device_count() > 1: # If more than 1 GPU
# model.is_parallelizable = True
# model.model_parallel = True
model.to(device)
accelerator = Accelerator(fsdp_plugin=fsdp_plugin)
print("Accelerator device:", accelerator.device)
model = accelerator.prepare_model(model)
from datetime import datetime
project = "jokes-gemma"
base_model_name = "gemma"
run_name = base_model_name + "-" + project
output_dir = "./" + run_name
trainer = transformers.Trainer(
model=model,
train_dataset=tokenized_train_data,
eval_dataset=tokenized_test_data,
args=transformers.TrainingArguments(
output_dir=output_dir,
warmup_steps=1,
per_device_train_batch_size=2,
gradient_accumulation_steps=1,
gradient_checkpointing=True,
max_steps=500,
learning_rate=2.5e-5, # Want a small lr for finetuning
bf16=True,
optim="paged_adamw_8bit",
logging_steps=25, # When to start reporting loss
logging_dir="./logs", # Directory for storing logs
save_strategy="steps", # Save the model checkpoint every logging step
save_steps=25, # Save checkpoints every 50 steps
evaluation_strategy="steps", # Evaluate the model every logging step
eval_steps=25, # Evaluate and save checkpoints every 50 steps
do_eval=True, # Perform evaluation at the end of training
report_to="wandb", # Comment this out if you don't want to use weights & baises
run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}" # Name of the W&B run (optional)
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()
|