File size: 5,872 Bytes
e116e32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, AdamW, get_linear_schedule_with_warmup, BitsAndBytesConfig
import transformers
import warnings
warnings.filterwarnings("ignore")
base_model_id= "google/gemma-2b"
torch.cuda.set_device(0)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print("Using device:", device)
# Load the jokes dataset
dataset = load_dataset("ysharma/short_jokes")
# Accessing the train split
train_data = dataset['train']
# Shuffle the dataset and select 20% of the data
twenty_percent_size = int(0.2 * len(train_data))
subset = train_data.shuffle(seed=42)[:twenty_percent_size]


import torch
print("Available devices:", torch.cuda.device_count())
print("Current device:", torch.cuda.current_device())


#accelerate
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig

fsdp_plugin = FullyShardedDataParallelPlugin(
    state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),
    optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)




tokenizer = AutoTokenizer.from_pretrained(
    base_model_id,
    padding_side="left",
    add_eos_token=True,
    add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token

def formatting_func(example):
    text = f"### The following is a note by Eevee the Dog: {example['note']}"
    return text
def generate_and_tokenize_prompt(prompt):
    return tokenizer(formatting_func(prompt))


bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)


model = AutoModelForCausalLM.from_pretrained(base_model_id, quantization_config=bnb_config, device_map="auto")


def tokenize_function(examples):
    return tokenizer(examples["Joke"], padding="max_length", truncation=True, max_length=50)

from datasets import load_dataset
dataset = load_dataset("ysharma/short_jokes")
# Shuffle the dataset and select 20% of the data
# print("train_data ",train_data, "subset ",subset)

train_test_split = dataset['train'].train_test_split(test_size=0.1)
train_data = train_test_split['train']
test_data = train_test_split['test']

# Now, tokenize the newly split datasets
tokenized_train_data = train_data.map(tokenize_function, batched=True)
tokenized_test_data = test_data.map(tokenize_function, batched=True)



eval_prompt = " why man are  "

eval_tokenizer = AutoTokenizer.from_pretrained(
    base_model_id,
    add_bos_token=True,
)

model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda")

model.eval()
with torch.no_grad():
    print(eval_tokenizer.decode(model.generate(**model_input, max_new_tokens=50, repetition_penalty=1.15)[0], skip_special_tokens=True))


from peft import prepare_model_for_kbit_training,LoraConfig, get_peft_model

model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)

def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
    )

config = LoraConfig(
    r=32,
    lora_alpha=64,
    target_modules=[
        "q_proj",
        "k_proj",
        "v_proj",
        "o_proj",
        "gate_proj",
        "up_proj",
        "down_proj",
        "lm_head",
    ],
    bias="none",
    lora_dropout=0.05,  # Conventional
    task_type="CAUSAL_LM",
)

model = get_peft_model(model, config)
print_trainable_parameters(model)


# if torch.cuda.device_count() > 1: # If more than 1 GPU
#     model.is_parallelizable = True
#     model.model_parallel = True



model.to(device)
accelerator = Accelerator(fsdp_plugin=fsdp_plugin)
print("Accelerator device:", accelerator.device)
model = accelerator.prepare_model(model)


from datetime import datetime

project = "jokes-gemma"
base_model_name = "gemma"
run_name = base_model_name + "-" + project
output_dir = "./" + run_name

trainer = transformers.Trainer(
    model=model,
    train_dataset=tokenized_train_data,
    eval_dataset=tokenized_test_data,
    args=transformers.TrainingArguments(
        output_dir=output_dir,
        warmup_steps=1,
        per_device_train_batch_size=2,
        gradient_accumulation_steps=1,
        gradient_checkpointing=True,
        max_steps=500,
        learning_rate=2.5e-5, # Want a small lr for finetuning
        bf16=True,
        optim="paged_adamw_8bit",
        logging_steps=25,              # When to start reporting loss
        logging_dir="./logs",        # Directory for storing logs
        save_strategy="steps",       # Save the model checkpoint every logging step
        save_steps=25,                # Save checkpoints every 50 steps
        evaluation_strategy="steps", # Evaluate the model every logging step
        eval_steps=25,               # Evaluate and save checkpoints every 50 steps
        do_eval=True,                # Perform evaluation at the end of training
        report_to="wandb",           # Comment this out if you don't want to use weights & baises
        run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}"          # Name of the W&B run (optional)
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)

model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
trainer.train()