gemma-jokes / train.py
ameerazam08's picture
Upload folder using huggingface_hub
688daa5 verified
raw
history blame
5.88 kB
import torch
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from transformers import AutoTokenizer, AutoModelForCausalLM, AdamW, get_linear_schedule_with_warmup, BitsAndBytesConfig
import transformers
import warnings
warnings.filterwarnings("ignore")
base_model_id= "google/gemma-2b"
torch.cuda.set_device(0)
device = "cuda:0" if torch.cuda.is_available() else "cpu"
print("Using device:", device)
# Load the jokes dataset
dataset = load_dataset("ysharma/short_jokes")
# Accessing the train split
train_data = dataset['train']
# Shuffle the dataset and select 20% of the data
twenty_percent_size = int(0.2 * len(train_data))
subset = train_data.shuffle(seed=42)[:twenty_percent_size]
import torch
print("Available devices:", torch.cuda.device_count())
print("Current device:", torch.cuda.current_device())
#accelerate
from accelerate import FullyShardedDataParallelPlugin, Accelerator
from torch.distributed.fsdp.fully_sharded_data_parallel import FullOptimStateDictConfig, FullStateDictConfig
fsdp_plugin = FullyShardedDataParallelPlugin(
state_dict_config=FullStateDictConfig(offload_to_cpu=True, rank0_only=False),
optim_state_dict_config=FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=False),
)
tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
padding_side="left",
add_eos_token=True,
add_bos_token=True,
)
tokenizer.pad_token = tokenizer.eos_token
# def formatting_func(example):
# text = f"### The following is a note by Eevee the Dog: {example['note']}"
# return text
# def generate_and_tokenize_prompt(prompt):
# return tokenizer(formatting_func(prompt))
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(base_model_id, quantization_config=bnb_config, device_map="auto")
def tokenize_function(examples):
return tokenizer(examples["Joke"], padding="max_length", truncation=True, max_length=50)
from datasets import load_dataset
dataset = load_dataset("ysharma/short_jokes")
# Shuffle the dataset and select 20% of the data
# print("train_data ",train_data, "subset ",subset)
train_test_split = dataset['train'].train_test_split(test_size=0.1)
train_data = train_test_split['train']
test_data = train_test_split['test']
# Now, tokenize the newly split datasets
tokenized_train_data = train_data.map(tokenize_function, batched=True)
tokenized_test_data = test_data.map(tokenize_function, batched=True)
eval_prompt = " why man are "
eval_tokenizer = AutoTokenizer.from_pretrained(
base_model_id,
add_bos_token=True,
)
model_input = eval_tokenizer(eval_prompt, return_tensors="pt").to("cuda")
model.eval()
with torch.no_grad():
print(eval_tokenizer.decode(model.generate(**model_input, max_new_tokens=50, repetition_penalty=1.15)[0], skip_special_tokens=True))
from peft import prepare_model_for_kbit_training,LoraConfig, get_peft_model
model.gradient_checkpointing_enable()
model = prepare_model_for_kbit_training(model)
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
config = LoraConfig(
r=32,
lora_alpha=64,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
"lm_head",
],
bias="none",
lora_dropout=0.05, # Conventional
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print_trainable_parameters(model)
# if torch.cuda.device_count() > 1: # If more than 1 GPU
# model.is_parallelizable = True
# model.model_parallel = True
model.to(device)
accelerator = Accelerator(fsdp_plugin=fsdp_plugin)
print("Accelerator device:", accelerator.device)
model = accelerator.prepare_model(model)
from datetime import datetime
project = "jokes-gemma"
base_model_name = "gemma"
run_name = base_model_name + "-" + project
output_dir = "./" + run_name
trainer = transformers.Trainer(
model=model,
train_dataset=tokenized_train_data,
eval_dataset=tokenized_test_data,
args=transformers.TrainingArguments(
output_dir=output_dir,
warmup_steps=1,
per_device_train_batch_size=2,
gradient_accumulation_steps=1,
gradient_checkpointing=True,
max_steps=500,
learning_rate=2.5e-5, # Want a small lr for finetuning
bf16=True,
optim="paged_adamw_8bit",
logging_steps=25, # When to start reporting loss
logging_dir="./logs", # Directory for storing logs
save_strategy="steps", # Save the model checkpoint every logging step
save_steps=25, # Save checkpoints every 50 steps
evaluation_strategy="steps", # Evaluate the model every logging step
eval_steps=25, # Evaluate and save checkpoints every 50 steps
do_eval=True, # Perform evaluation at the end of training
report_to="wandb", # Comment this out if you don't want to use weights & baises
run_name=f"{run_name}-{datetime.now().strftime('%Y-%m-%d-%H-%M')}" # Name of the W&B run (optional)
),
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
trainer.train()