Commit
•
847a2cd
1
Parent(s):
8481dff
Added example (#1)
Browse files- Added example (0741be329067ad79bec2dc8361203c1f979898e4)
Co-authored-by: Filip <Filip-Packan@users.noreply.huggingface.co>
README.md
CHANGED
@@ -51,25 +51,50 @@ Further details are available in the corresponding [**paper**](https://huggingfa
|
|
51 |
### Usage
|
52 |
|
53 |
```python
|
54 |
-
import torch
|
55 |
-
import torch.nn as nn
|
56 |
-
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
|
60 |
-
# CONFIG and MODEL SETUP
|
61 |
-
model_name = 'amiriparian/ExHuBERT'
|
62 |
-
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
|
63 |
-
model = AutoModelForAudioClassification.from_pretrained(model_name, trust_remote_code=True,revision="b158d45ed8578432468f3ab8d46cbe5974380812")
|
64 |
-
|
65 |
-
# Freezing half of the encoder for further transfer learning
|
66 |
-
model.freeze_og_encoder()
|
67 |
-
|
68 |
-
sampling_rate=16000
|
69 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
-
model = model.to(device)
|
71 |
-
|
72 |
-
|
73 |
```
|
74 |
|
75 |
### Citation Info
|
|
|
51 |
### Usage
|
52 |
|
53 |
```python
|
54 |
+
import torch
|
55 |
+
import torch.nn as nn
|
56 |
+
from transformers import AutoModelForAudioClassification, Wav2Vec2FeatureExtractor
|
57 |
+
|
58 |
+
|
59 |
+
# CONFIG and MODEL SETUP
|
60 |
+
model_name = 'amiriparian/ExHuBERT'
|
61 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("facebook/hubert-base-ls960")
|
62 |
+
model = AutoModelForAudioClassification.from_pretrained(model_name, trust_remote_code=True,
|
63 |
+
revision="b158d45ed8578432468f3ab8d46cbe5974380812")
|
64 |
+
|
65 |
+
# Freezing half of the encoder for further transfer learning
|
66 |
+
model.freeze_og_encoder()
|
67 |
+
|
68 |
+
sampling_rate = 16000
|
69 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
70 |
+
model = model.to(device)
|
71 |
+
|
72 |
+
|
73 |
+
|
74 |
+
# Example application from a local audiofile
|
75 |
+
import numpy as np
|
76 |
+
import librosa
|
77 |
+
import torch.nn.functional as F
|
78 |
+
# Sample taken from the Toronto emotional speech set (TESS) https://tspace.library.utoronto.ca/handle/1807/24487
|
79 |
+
waveform, sr_wav = librosa.load("YAF_date_angry.wav")
|
80 |
+
# Max Padding to 3 Seconds at 16k sampling rate for the best results
|
81 |
+
waveform = feature_extractor(waveform, sampling_rate=sampling_rate,padding = 'max_length',max_length = 48000)
|
82 |
+
waveform = waveform['input_values'][0]
|
83 |
+
waveform = waveform.reshape(1, -1)
|
84 |
+
waveform = torch.from_numpy(waveform).to(device)
|
85 |
+
with torch.no_grad():
|
86 |
+
output = model(waveform)
|
87 |
+
output = F.softmax(output.logits, dim = 1)
|
88 |
+
output = output.detach().cpu().numpy().round(2)
|
89 |
+
print(output)
|
90 |
+
|
91 |
+
# [[0. 0. 0. 1. 0. 0.]]
|
92 |
+
# Low | High Arousal
|
93 |
+
# Neg. Neut. Pos. | Neg. Neut. Pos Valence
|
94 |
+
# Disgust, Neutral, Kind| Anger, Surprise, Joy Example emotions
|
95 |
|
96 |
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
```
|
99 |
|
100 |
### Citation Info
|