File size: 9,653 Bytes
eaffd42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from llama_cpp import Llama
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS, Chroma
from faster_whisper import WhisperModel
import os
import gradio as gr
import torch
import base64
import json
import chromadb
import requests
import gc, torch
GPU = False if torch.cuda.device_count()==0 else True
n_threads = os.cpu_count()//2
global llm
def load_llm(model_name):
try:
del llm
except:
pass
torch.cuda.empty_cache()
gc.collect()
llm = Llama(model_path=model_name,
n_threads=11, n_gpu_layers=80, n_ctx=3000)
return llm
def load_faiss_db():
new_db = FAISS.load_local("faiss_MH_c2000_o100", hf_embs)
return new_db
def load_chroma_db():
ABS_PATH = os.getcwd()#os.path.dirname(os.path.abspath(__file__))
DB_DIR = os.path.join(ABS_PATH, "chroma_MH_c1000_o0")
print("DB_DIR", DB_DIR)
client_settings = chromadb.config.Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=DB_DIR,
anonymized_telemetry=False
)
vectorstore = Chroma(
collection_name="langchain_store",
embedding_function=hf_embs,
client_settings=client_settings,
persist_directory=DB_DIR,
)
return vectorstore
def init_prompt_tempalate(context, question):
prompt_template = f"""<s>[INST]
As a health insurance assistant, use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Concise answer in French:
[/INST]"""
prompt_template = f"""As a health insurance assistant, use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer.
{context}
Question: {question}
Concise answer in French:"""
prompt_template = f"""Answer the question based only on the following context:
{context}
Question: {question}
Answer in the following language: French
"""
prompt_template = f"""<|system|>
Answer the question based only on the following context:
{context}</s>
<|user|>
{question}</s>
<|assistant|>
"""
return prompt_template
def wav_to_base64(file_path):
base64_data = base64.b64encode(open(file_path, "rb").read()).decode("utf-8")
return base64_data
def search_llm(question, max_tokens=10, temp=0, k_chunks=1, top_k=40,
top_p=0.95):
results = {}
context = ""
new_db = new_db_faiss
# if db_type=="faiss":
# new_db = new_db_faiss
# else:
# new_db = new_db_chroma
docs = new_db.similarity_search_with_score(question,
k=int(k_chunks))
contexts = [el[0].page_content for el in docs]
scores = [el[1] for el in docs]
context = "\n".join(contexts)
score = sum(scores) / len(scores)
score = round(score, 3)
url = docs[0][0].metadata
prompt_template = init_prompt_tempalate(context, question)
output = llm(prompt_template,
max_tokens=int(max_tokens),
stop=["Question:", "\n"],
echo=True,
temperature=temp,
top_k=int(top_k),
top_p=top_p)
# first_reponse = output["choices"][0]["text"].split("answer in French:")[-1].strip()
first_reponse = output["choices"][0]["text"].split("<|assistant|>")[-1].strip()
results["Response"] = first_reponse
# results["prompt_template"] = prompt_template
results["context"] = context
results["source"] = url
results["context_score"] = score
return results["Response"], results["source"], results["context"], results["context_score"]
def stt(path):
injson = {}
injson["data"] = wav_to_base64(path)
results = requests.post(url="http://0.0.0.0:5566/api",
json=injson,
verify=False)
transcription = results.json()["transcription"]
query = transcription
query = transcription if "?" in transcription else transcription + "?"
return query
def STT_LLM(path, max_tokens, temp, k_chunks, top_k, top_p, db_type):
"""
"""
query = stt(path)
Response, url, context, contextScore = search_llm(query, max_tokens, temp, k_chunks, top_k, top_p)
return query, Response, url["source"], context, str(contextScore)
def LLM(content, max_tokens, temp, k_chunks, top_k, top_p, db_type):
Response, url, context, contextScore = search_llm(content, max_tokens, temp, k_chunks, top_k,
top_p)
url = url["source"]
return Response, url, context, str(contextScore)
embs_name = "sentence-transformers/all-mpnet-base-v2"
hf_embs = HuggingFaceEmbeddings(model_name=embs_name,
model_kwargs={"device": "cuda"})
new_db_chroma = load_faiss_db()
new_db_faiss = load_chroma_db()
### Load models
#stt
wspr = WhisperModel("small", device="cuda" if GPU else "cpu", compute_type="int8")
#llm
model_name = "mistral-7b-instruct-v0.1.Q4_K_M.gguf"
model_name = "zephyr-7b-beta.Q4_K_M.gguf"
llm = load_llm(model_name)
demo = gr.Blocks()
with demo:
with gr.Tab(model_name):
with gr.Row():
with gr.Column():
with gr.Box():
content = gr.Text(label="Posez votre question")
audio_path = gr.Audio(source="microphone",
format="mp3",
type="filepath",
label="Posez votre question (Whisper-small)")
with gr.Row():
max_tokens = gr.Number(label="Max_tokens", value=100, maximum=1000, minimum=1)
temp = gr.Number(label="Temperature", value=0.1, maximum=1.0, minimum=0.0, step=0.1)
k_chunks = gr.Number(label="k_chunks", value=2, maximum=5, minimum=1)
top_k = gr.Number(label="top_k", value=100, maximum=1000, minimum=1)
top_p = gr.Number(label="top_p", value=0.95, maximum=1.0, minimum=0.0)
# with gr.Box():
# db_type = gr.Dropdown(choices=["faiss", "chromadb"], label="Vector DB", value="faiss")
# # llm_name = gr.Dropdown(choices=["vicuna-7b-v1.3.ggmlv3.q4_1.bin",
# # "vicuna-7b-v1.3.ggmlv3.q5_1.bin"],
# # label="llm", value="vicuna-7b-v1.3.ggmlv3.q4_1.bin")
# b3 = gr.Button("update model")
# # b3.click(load_llm, inputs=llm_name, outputs=None)
with gr.Column():
# transcription = gr.Text(label="transcription")
Response = gr.Text(label="Réponse")
url = gr.Text(label="url source")
context = gr.Text(label="contexte (chunks)")
contextScore = gr.Text(label="contexte score (L2 distance)")
with gr.Box():
b2 = gr.Button("reconnaissace vocale")
b1 = gr.Button("search llm")
b1.click(LLM, inputs=[content, max_tokens, temp, k_chunks, top_k, top_p], #db_type
outputs=[Response, url, context, contextScore])
b2.click(stt, inputs=audio_path, outputs=content)
# with gr.Tab("gptq"):
# with gr.Row():
# with gr.Column():
# with gr.Box():
# content = gr.Text(label="Posez votre question")
# audio_path = gr.Audio(source="microphone",
# format="mp3",
# type="filepath",
# label="Posez votre question (Whisper-small)")
# with gr.Row():
# max_tokens = gr.Number(label="Max_tokens", value=100, maximum=1000, minimum=1)
# temp = gr.Number(label="Temperature", value=0.1, maximum=1.0, minimum=0.0)
# k_chunks = gr.Number(label="k_chunks", value=2, maximum=3, minimum=1)
# top_k = gr.Number(label="top_k", value=100, maximum=1000, minimum=1)
# top_p = gr.Number(label="top_p", value=0.95, maximum=1.0, minimum=0.0)
# with gr.Box():
# db_type = gr.Dropdown(choices=["faiss", "chromadb"], label="Vector DB", value="faiss")
# llm_name = gr.Dropdown(choices=["llama-2-7b.ggmlv3.q4_1.bin",
# "vicuna-7b-v1.3.ggmlv3.q4_1.bin"],
# label="llm", value="llama-2-7b.ggmlv3.q4_1.bin")
# b3 = gr.Button("update model")
# # b3.click(stt, inputs=llm_name, outputs=None)
# with gr.Column():
# # transcription = gr.Text(label="transcription")
# Response = gr.Text(label="Réponse")
# url = gr.Text(label="url source")
# context = gr.Text(label="contexte (chunks)")
# contextScore = gr.Text(label="contexte score (L2 distance)")
# with gr.Box():
# b2 = gr.Button("reconnaissace vocale")
# b1 = gr.Button("search llm")
# b1.click(LLM, inputs=[content, max_tokens, temp, k_chunks, top_k, top_p, db_type],
# outputs=[Response, url, context, contextScore])
# b2.click(stt, inputs=audio_path, outputs=content)
if __name__ == "__main__":
demo.launch(share=True, enable_queue=True, show_api=True) |