amyeroberts
HF staff
Duplicate from HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
e9c76ea
verified
# coding=utf-8 | |
# Copyright 2024 The HuggingFace Inc. team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Siglip model configuration""" | |
import os | |
from typing import Union | |
from transformers.configuration_utils import PretrainedConfig | |
from transformers.utils import logging | |
logger = logging.get_logger(__name__) | |
SIGLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
"google/siglip-base-patch16-224": "https://huggingface.co/google/siglip-base-patch16-224/resolve/main/config.json", | |
} | |
class SiglipTextConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SiglipTextModel`]. It is used to instantiate a | |
Siglip text encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip | |
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
vocab_size (`int`, *optional*, defaults to 32000): | |
Vocabulary size of the Siglip text model. Defines the number of different tokens that can be represented by | |
the `inputs_ids` passed when calling [`SiglipModel`]. | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
max_position_embeddings (`int`, *optional*, defaults to 64): | |
The maximum sequence length that this model might ever be used with. Typically set this to something large | |
just in case (e.g., 512 or 1024 or 2048). | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
pad_token_id (`int`, *optional*, defaults to 1): | |
The id of the padding token in the vocabulary. | |
bos_token_id (`int`, *optional*, defaults to 49406): | |
The id of the beginning-of-sequence token in the vocabulary. | |
eos_token_id (`int`, *optional*, defaults to 49407): | |
The id of the end-of-sequence token in the vocabulary. | |
Example: | |
```python | |
>>> from transformers import SiglipTextConfig, SiglipTextModel | |
>>> # Initializing a SiglipTextConfig with google/siglip-base-patch16-224 style configuration | |
>>> configuration = SiglipTextConfig() | |
>>> # Initializing a SiglipTextModel (with random weights) from the google/siglip-base-patch16-224 style configuration | |
>>> model = SiglipTextModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "siglip_text_model" | |
def __init__( | |
self, | |
vocab_size=32000, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
max_position_embeddings=64, | |
hidden_act="gelu_pytorch_tanh", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
# This differs from `CLIPTokenizer`'s default and from openai/siglip | |
# See https://github.com/huggingface/transformers/pull/24773#issuecomment-1632287538 | |
pad_token_id=1, | |
bos_token_id=49406, | |
eos_token_id=49407, | |
_flash_attn_2_enabled=True, | |
**kwargs, | |
): | |
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.max_position_embeddings = max_position_embeddings | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self.attention_dropout = attention_dropout | |
self._flash_attn_2_enabled = _flash_attn_2_enabled | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the text config dict if we are loading from SiglipConfig | |
if config_dict.get("model_type") == "siglip": | |
config_dict = config_dict["text_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class SiglipVisionConfig(PretrainedConfig): | |
r""" | |
This is the configuration class to store the configuration of a [`SiglipVisionModel`]. It is used to instantiate a | |
Siglip vision encoder according to the specified arguments, defining the model architecture. Instantiating a | |
configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip | |
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
hidden_size (`int`, *optional*, defaults to 768): | |
Dimensionality of the encoder layers and the pooler layer. | |
intermediate_size (`int`, *optional*, defaults to 3072): | |
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
num_hidden_layers (`int`, *optional*, defaults to 12): | |
Number of hidden layers in the Transformer encoder. | |
num_attention_heads (`int`, *optional*, defaults to 12): | |
Number of attention heads for each attention layer in the Transformer encoder. | |
num_channels (`int`, *optional*, defaults to 3): | |
Number of channels in the input images. | |
image_size (`int`, *optional*, defaults to 224): | |
The size (resolution) of each image. | |
patch_size (`int`, *optional*, defaults to 16): | |
The size (resolution) of each patch. | |
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): | |
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported. | |
layer_norm_eps (`float`, *optional*, defaults to 1e-06): | |
The epsilon used by the layer normalization layers. | |
attention_dropout (`float`, *optional*, defaults to 0.0): | |
The dropout ratio for the attention probabilities. | |
Example: | |
```python | |
>>> from transformers import SiglipVisionConfig, SiglipVisionModel | |
>>> # Initializing a SiglipVisionConfig with google/siglip-base-patch16-224 style configuration | |
>>> configuration = SiglipVisionConfig() | |
>>> # Initializing a SiglipVisionModel (with random weights) from the google/siglip-base-patch16-224 style configuration | |
>>> model = SiglipVisionModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
```""" | |
model_type = "siglip_vision_model" | |
def __init__( | |
self, | |
hidden_size=768, | |
intermediate_size=3072, | |
num_hidden_layers=12, | |
num_attention_heads=12, | |
num_channels=3, | |
image_size=224, | |
patch_size=16, | |
hidden_act="gelu_pytorch_tanh", | |
layer_norm_eps=1e-6, | |
attention_dropout=0.0, | |
_flash_attn_2_enabled=True, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.hidden_size = hidden_size | |
self.intermediate_size = intermediate_size | |
self.num_hidden_layers = num_hidden_layers | |
self.num_attention_heads = num_attention_heads | |
self.num_channels = num_channels | |
self.patch_size = patch_size | |
self.image_size = image_size | |
self.attention_dropout = attention_dropout | |
self.layer_norm_eps = layer_norm_eps | |
self.hidden_act = hidden_act | |
self._flash_attn_2_enabled = _flash_attn_2_enabled | |
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": | |
cls._set_token_in_kwargs(kwargs) | |
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) | |
# get the vision config dict if we are loading from SiglipConfig | |
if config_dict.get("model_type") == "siglip": | |
config_dict = config_dict["vision_config"] | |
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: | |
logger.warning( | |
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " | |
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." | |
) | |
return cls.from_dict(config_dict, **kwargs) | |
class SiglipConfig(PretrainedConfig): | |
r""" | |
[`SiglipConfig`] is the configuration class to store the configuration of a [`SiglipModel`]. It is used to | |
instantiate a Siglip model according to the specified arguments, defining the text model and vision model configs. | |
Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip | |
[google/siglip-base-patch16-224](https://huggingface.co/google/siglip-base-patch16-224) architecture. | |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
documentation from [`PretrainedConfig`] for more information. | |
Args: | |
text_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`SiglipTextConfig`]. | |
vision_config (`dict`, *optional*): | |
Dictionary of configuration options used to initialize [`SiglipVisionConfig`]. | |
kwargs (*optional*): | |
Dictionary of keyword arguments. | |
Example: | |
```python | |
>>> from transformers import SiglipConfig, SiglipModel | |
>>> # Initializing a SiglipConfig with google/siglip-base-patch16-224 style configuration | |
>>> configuration = SiglipConfig() | |
>>> # Initializing a SiglipModel (with random weights) from the google/siglip-base-patch16-224 style configuration | |
>>> model = SiglipModel(configuration) | |
>>> # Accessing the model configuration | |
>>> configuration = model.config | |
>>> # We can also initialize a SiglipConfig from a SiglipTextConfig and a SiglipVisionConfig | |
>>> from transformers import SiglipTextConfig, SiglipVisionConfig | |
>>> # Initializing a SiglipText and SiglipVision configuration | |
>>> config_text = SiglipTextConfig() | |
>>> config_vision = SiglipVisionConfig() | |
>>> config = SiglipConfig.from_text_vision_configs(config_text, config_vision) | |
```""" | |
model_type = "siglip" | |
def __init__(self, text_config=None, vision_config=None, **kwargs): | |
super().__init__(**kwargs) | |
if text_config is None: | |
text_config = {} | |
logger.info("`text_config` is `None`. Initializing the `SiglipTextConfig` with default values.") | |
if vision_config is None: | |
vision_config = {} | |
logger.info("`vision_config` is `None`. initializing the `SiglipVisionConfig` with default values.") | |
self.text_config = SiglipTextConfig(**text_config) | |
self.vision_config = SiglipVisionConfig(**vision_config) | |
self.initializer_factor = 1.0 | |
def from_text_vision_configs(cls, text_config: SiglipTextConfig, vision_config: SiglipVisionConfig, **kwargs): | |
r""" | |
Instantiate a [`SiglipConfig`] (or a derived class) from siglip text model configuration and siglip vision | |
model configuration. | |
Returns: | |
[`SiglipConfig`]: An instance of a configuration object | |
""" | |
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs) | |