update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wildreceipt
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: layoutlmv3-finetuned-wildreceipt
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: wildreceipt
|
20 |
+
type: wildreceipt
|
21 |
+
config: WildReceipt
|
22 |
+
split: train
|
23 |
+
args: WildReceipt
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.874880087707277
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.878491812302188
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.8766822301565504
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9253043764396183
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# layoutlmv3-finetuned-wildreceipt
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the wildreceipt dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.3111
|
47 |
+
- Precision: 0.8749
|
48 |
+
- Recall: 0.8785
|
49 |
+
- F1: 0.8767
|
50 |
+
- Accuracy: 0.9253
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 1e-05
|
70 |
+
- train_batch_size: 4
|
71 |
+
- eval_batch_size: 4
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- training_steps: 4000
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| No log | 0.32 | 100 | 1.3060 | 0.6792 | 0.3615 | 0.4718 | 0.6966 |
|
82 |
+
| No log | 0.63 | 200 | 0.8842 | 0.6524 | 0.5193 | 0.5783 | 0.7737 |
|
83 |
+
| No log | 0.95 | 300 | 0.6795 | 0.7338 | 0.6772 | 0.7044 | 0.8336 |
|
84 |
+
| No log | 1.26 | 400 | 0.5604 | 0.7719 | 0.7390 | 0.7551 | 0.8629 |
|
85 |
+
| 1.0319 | 1.58 | 500 | 0.4862 | 0.7819 | 0.7618 | 0.7717 | 0.8730 |
|
86 |
+
| 1.0319 | 1.89 | 600 | 0.4365 | 0.7852 | 0.7807 | 0.7829 | 0.8795 |
|
87 |
+
| 1.0319 | 2.21 | 700 | 0.4182 | 0.8162 | 0.8016 | 0.8088 | 0.8897 |
|
88 |
+
| 1.0319 | 2.52 | 800 | 0.3886 | 0.8126 | 0.8196 | 0.8161 | 0.8936 |
|
89 |
+
| 1.0319 | 2.84 | 900 | 0.3637 | 0.8260 | 0.8347 | 0.8303 | 0.9004 |
|
90 |
+
| 0.4162 | 3.15 | 1000 | 0.3482 | 0.8532 | 0.8243 | 0.8385 | 0.9062 |
|
91 |
+
| 0.4162 | 3.47 | 1100 | 0.3474 | 0.8573 | 0.8248 | 0.8407 | 0.9042 |
|
92 |
+
| 0.4162 | 3.79 | 1200 | 0.3325 | 0.8408 | 0.8435 | 0.8421 | 0.9086 |
|
93 |
+
| 0.4162 | 4.1 | 1300 | 0.3262 | 0.8468 | 0.8467 | 0.8468 | 0.9095 |
|
94 |
+
| 0.4162 | 4.42 | 1400 | 0.3237 | 0.8511 | 0.8442 | 0.8477 | 0.9100 |
|
95 |
+
| 0.2764 | 4.73 | 1500 | 0.3156 | 0.8563 | 0.8456 | 0.8509 | 0.9122 |
|
96 |
+
| 0.2764 | 5.05 | 1600 | 0.3032 | 0.8558 | 0.8566 | 0.8562 | 0.9153 |
|
97 |
+
| 0.2764 | 5.36 | 1700 | 0.3120 | 0.8604 | 0.8457 | 0.8530 | 0.9142 |
|
98 |
+
| 0.2764 | 5.68 | 1800 | 0.2976 | 0.8608 | 0.8592 | 0.8600 | 0.9178 |
|
99 |
+
| 0.2764 | 5.99 | 1900 | 0.3056 | 0.8551 | 0.8676 | 0.8613 | 0.9171 |
|
100 |
+
| 0.212 | 6.31 | 2000 | 0.3191 | 0.8528 | 0.8599 | 0.8563 | 0.9147 |
|
101 |
+
| 0.212 | 6.62 | 2100 | 0.3051 | 0.8653 | 0.8635 | 0.8644 | 0.9186 |
|
102 |
+
| 0.212 | 6.94 | 2200 | 0.3022 | 0.8681 | 0.8632 | 0.8657 | 0.9208 |
|
103 |
+
| 0.212 | 7.26 | 2300 | 0.3101 | 0.8605 | 0.8643 | 0.8624 | 0.9178 |
|
104 |
+
| 0.212 | 7.57 | 2400 | 0.3100 | 0.8553 | 0.8693 | 0.8622 | 0.9163 |
|
105 |
+
| 0.1725 | 7.89 | 2500 | 0.3012 | 0.8685 | 0.8723 | 0.8704 | 0.9221 |
|
106 |
+
| 0.1725 | 8.2 | 2600 | 0.3135 | 0.8627 | 0.8756 | 0.8691 | 0.9187 |
|
107 |
+
| 0.1725 | 8.52 | 2700 | 0.3115 | 0.8768 | 0.8671 | 0.8719 | 0.9229 |
|
108 |
+
| 0.1725 | 8.83 | 2800 | 0.3044 | 0.8757 | 0.8708 | 0.8732 | 0.9231 |
|
109 |
+
| 0.1725 | 9.15 | 2900 | 0.3042 | 0.8698 | 0.8658 | 0.8678 | 0.9212 |
|
110 |
+
| 0.142 | 9.46 | 3000 | 0.3095 | 0.8677 | 0.8702 | 0.8690 | 0.9207 |
|
111 |
+
| 0.142 | 9.78 | 3100 | 0.3119 | 0.8686 | 0.8762 | 0.8724 | 0.9229 |
|
112 |
+
| 0.142 | 10.09 | 3200 | 0.3078 | 0.8713 | 0.8774 | 0.8743 | 0.9238 |
|
113 |
+
| 0.142 | 10.41 | 3300 | 0.3123 | 0.8711 | 0.8753 | 0.8732 | 0.9238 |
|
114 |
+
| 0.142 | 10.73 | 3400 | 0.3098 | 0.8688 | 0.8774 | 0.8731 | 0.9232 |
|
115 |
+
| 0.1238 | 11.04 | 3500 | 0.3120 | 0.8737 | 0.8770 | 0.8754 | 0.9247 |
|
116 |
+
| 0.1238 | 11.36 | 3600 | 0.3124 | 0.8760 | 0.8768 | 0.8764 | 0.9251 |
|
117 |
+
| 0.1238 | 11.67 | 3700 | 0.3101 | 0.8770 | 0.8759 | 0.8764 | 0.9254 |
|
118 |
+
| 0.1238 | 11.99 | 3800 | 0.3103 | 0.8767 | 0.8774 | 0.8770 | 0.9255 |
|
119 |
+
| 0.1238 | 12.3 | 3900 | 0.3122 | 0.8740 | 0.8788 | 0.8764 | 0.9251 |
|
120 |
+
| 0.1096 | 12.62 | 4000 | 0.3111 | 0.8749 | 0.8785 | 0.8767 | 0.9253 |
|
121 |
+
|
122 |
+
|
123 |
+
### Framework versions
|
124 |
+
|
125 |
+
- Transformers 4.23.0.dev0
|
126 |
+
- Pytorch 1.12.1+cu113
|
127 |
+
- Datasets 2.5.1
|
128 |
+
- Tokenizers 0.13.0
|