Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.89 +/- 0.29
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7715a25884612c2db3c5a4ba15a60c48567ca61560a2f3c84389c4e6a799aa1
|
3 |
+
size 108023
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -46,7 +46,7 @@
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,7 +77,7 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1919ade310>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f1919ad5c60>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1676362399639948307,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGInRPhUpuryFCQk/GInRPhUpuryFCQk/GInRPhUpuryFCQk/GInRPhUpuryFCQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6t2NPrVOGj+fCZK/fjYrP8oZoD+6QUy/lCC6vx1cGj9iYXa/R0szvxN+L79eeLQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAYidE+FSm6vIUJCT9GAqE60NZgu5TD+LsYidE+FSm6vIUJCT9GAqE60NZgu5TD+LsYidE+FSm6vIUJCT9GAqE60NZgu5TD+LsYidE+FSm6vIUJCT9GAqE60NZgu5TD+LuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.40924907 -0.02272467 0.5353015 ]\n [ 0.40924907 -0.02272467 0.5353015 ]\n [ 0.40924907 -0.02272467 0.5353015 ]\n [ 0.40924907 -0.02272467 0.5353015 ]]",
|
60 |
+
"desired_goal": "[[ 0.2770837 0.6027635 -1.1409186 ]\n [ 0.66880023 1.250787 -0.7978779 ]\n [-1.4541192 0.60296804 -0.96242344]\n [-0.7003674 -0.6855175 1.4099233 ]]",
|
61 |
+
"observation": "[[ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]\n [ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]\n [ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]\n [ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXfWKPTlSfj3wHhQ+wqqWvPIRjL0Z2mU+aWhmPRnTx71etyk+AP88vRwjzLyuMhQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.06785081 0.06209013 0.14464927]\n [-0.01839197 -0.0683936 0.22446479]\n [ 0.05625192 -0.09757061 0.16573855]\n [-0.04614162 -0.02491909 0.14472458]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFFrW/WOh77+UhpRSlIwBbJRLMowBdJRHQKclL5Ec81Z1fZQoaAZoCWgPQwjfN772zFIFwJSGlFKUaBVLMmgWR0CnJPR1gYxddX2UKGgGaAloD0MIQwJGlzcH+L+UhpRSlGgVSzJoFkdApyS5PqLS/nV9lChoBmgJaA9DCFuxv+yePPC/lIaUUpRoFUsyaBZHQKckeM5OrQx1fZQoaAZoCWgPQwhxzLIngY3zv5SGlFKUaBVLMmgWR0CnJwMaCL/CdX2UKGgGaAloD0MI275H/fUK/7+UhpRSlGgVSzJoFkdApybHz19ORHV9lChoBmgJaA9DCNkJL8GpbwjAlIaUUpRoFUsyaBZHQKcmizw+dLB1fZQoaAZoCWgPQwhbXOMz2b8NwJSGlFKUaBVLMmgWR0CnJkrBCUosdX2UKGgGaAloD0MI5ngFoieFA8CUhpRSlGgVSzJoFkdApyi/io86m3V9lChoBmgJaA9DCJSilXuBGfS/lIaUUpRoFUsyaBZHQKcohEMLF4t1fZQoaAZoCWgPQwgvpMNDGL/wv5SGlFKUaBVLMmgWR0CnKEehPCVKdX2UKGgGaAloD0MIlGdeDruPAsCUhpRSlGgVSzJoFkdApygHX05EMXV9lChoBmgJaA9DCOLnvwevnfq/lIaUUpRoFUsyaBZHQKcqm4kNWlx1fZQoaAZoCWgPQwhbQ6m9iHb9v5SGlFKUaBVLMmgWR0CnKmBQ3xWldX2UKGgGaAloD0MIaqZ7ndSX47+UhpRSlGgVSzJoFkdApyoj9/BnBnV9lChoBmgJaA9DCEiHhzB+ugPAlIaUUpRoFUsyaBZHQKcp42NvOyF1fZQoaAZoCWgPQwgmxjL9EjH8v5SGlFKUaBVLMmgWR0CnLHJoCdSVdX2UKGgGaAloD0MII6DCEaSyAsCUhpRSlGgVSzJoFkdApyw3SSeRP3V9lChoBmgJaA9DCNy5MNKLGv6/lIaUUpRoFUsyaBZHQKcr+vgWJrN1fZQoaAZoCWgPQwgcJ4V5jzPzv5SGlFKUaBVLMmgWR0CnK7pfx+a0dX2UKGgGaAloD0MIdAzIXu9+9b+UhpRSlGgVSzJoFkdApy7nRsuWbHV9lChoBmgJaA9DCCcuxysQPQPAlIaUUpRoFUsyaBZHQKcuq+i8Fpx1fZQoaAZoCWgPQwi5+xwfLU7yv5SGlFKUaBVLMmgWR0CnLm9lmOENdX2UKGgGaAloD0MIoQ+WsaF7A8CUhpRSlGgVSzJoFkdApy4t+b3GoHV9lChoBmgJaA9DCDLH8q56gPa/lIaUUpRoFUsyaBZHQKcwHyzXz191fZQoaAZoCWgPQwjVPEfku9T+v5SGlFKUaBVLMmgWR0CnL+OxB3RpdX2UKGgGaAloD0MIuypQi8HjAsCUhpRSlGgVSzJoFkdApy+mQwK0D3V9lChoBmgJaA9DCH3O3a6X5v6/lIaUUpRoFUsyaBZHQKcvZN5+pfh1fZQoaAZoCWgPQwjXiGAcXPoAwJSGlFKUaBVLMmgWR0CnMTKNAC4jdX2UKGgGaAloD0MIVwbVBidi97+UhpRSlGgVSzJoFkdApzD2gOBlMHV9lChoBmgJaA9DCEqWk1D6ogHAlIaUUpRoFUsyaBZHQKcwuRyOrAB1fZQoaAZoCWgPQwiz0M5pFqgCwJSGlFKUaBVLMmgWR0CnMHewcHW0dX2UKGgGaAloD0MI+IpuvaZnAsCUhpRSlGgVSzJoFkdApzJOJYT0x3V9lChoBmgJaA9DCNPB+j+H+QHAlIaUUpRoFUsyaBZHQKcyEqaPS2J1fZQoaAZoCWgPQwieDI6SV+fov5SGlFKUaBVLMmgWR0CnMdVDKHO9dX2UKGgGaAloD0MILLtgcM2d+b+UhpRSlGgVSzJoFkdApzGUCzTnaHV9lChoBmgJaA9DCJWbqKW51QHAlIaUUpRoFUsyaBZHQKczid+Xqqx1fZQoaAZoCWgPQwgxCoLHt5cJwJSGlFKUaBVLMmgWR0CnM02cJ+lTdX2UKGgGaAloD0MI7KaU10qo9L+UhpRSlGgVSzJoFkdApzMQ2/BWP3V9lChoBmgJaA9DCITZBBiWP+a/lIaUUpRoFUsyaBZHQKcyz2SMcZN1fZQoaAZoCWgPQwgXDoRkAZPlv5SGlFKUaBVLMmgWR0CnNKgAIY3vdX2UKGgGaAloD0MIHSCYo8cPAMCUhpRSlGgVSzJoFkdApzRrwtrbg3V9lChoBmgJaA9DCBS0yeGTDvS/lIaUUpRoFUsyaBZHQKc0LklNUOx1fZQoaAZoCWgPQwi9NbBVgqUIwJSGlFKUaBVLMmgWR0CnM+zvy9VWdX2UKGgGaAloD0MI9MXeiy8a+r+UhpRSlGgVSzJoFkdApzW2ymhufnV9lChoBmgJaA9DCEIKnkKuVO2/lIaUUpRoFUsyaBZHQKc1eqTbFjx1fZQoaAZoCWgPQwibApmdRa/8v5SGlFKUaBVLMmgWR0CnNT0zj3mFdX2UKGgGaAloD0MIS+ZY3lXP/L+UhpRSlGgVSzJoFkdApzT750r9VHV9lChoBmgJaA9DCPhrskY9xOi/lIaUUpRoFUsyaBZHQKc2y01IiC91fZQoaAZoCWgPQwgKo1nZPqT2v5SGlFKUaBVLMmgWR0CnNo9Aood/dX2UKGgGaAloD0MIk3L3OT76AsCUhpRSlGgVSzJoFkdApzZR20Re1XV9lChoBmgJaA9DCJFgqpm1FPy/lIaUUpRoFUsyaBZHQKc2EGdqcmV1fZQoaAZoCWgPQwjAr5EkCFf9v5SGlFKUaBVLMmgWR0CnN99ic5KfdX2UKGgGaAloD0MI05/9SBHZAMCUhpRSlGgVSzJoFkdApzejPMSsbXV9lChoBmgJaA9DCKGfqdctwvm/lIaUUpRoFUsyaBZHQKc3Zd8Aq/d1fZQoaAZoCWgPQwiOklfnGBDpv5SGlFKUaBVLMmgWR0CnNySMUAT7dX2UKGgGaAloD0MIcQUU6umj/r+UhpRSlGgVSzJoFkdApzkbQqqfe3V9lChoBmgJaA9DCPbtJCL8C+y/lIaUUpRoFUsyaBZHQKc43whnrY51fZQoaAZoCWgPQwgwoYLDCyIJwJSGlFKUaBVLMmgWR0CnOKGmce8xdX2UKGgGaAloD0MIPDPBcK5h8L+UhpRSlGgVSzJoFkdApzhhRCQcP3V9lChoBmgJaA9DCPN0riglRPy/lIaUUpRoFUsyaBZHQKc6K57PY4B1fZQoaAZoCWgPQwggXWxaKcQDwJSGlFKUaBVLMmgWR0CnOe94FA3UdX2UKGgGaAloD0MILCtNSkG3/b+UhpRSlGgVSzJoFkdApzmx68g6l3V9lChoBmgJaA9DCCf5Eb9ijeW/lIaUUpRoFUsyaBZHQKc5cJMxoIx1fZQoaAZoCWgPQwhFf2jmyfX2v5SGlFKUaBVLMmgWR0CnO0g9Net0dX2UKGgGaAloD0MIaOxLNh4s87+UhpRSlGgVSzJoFkdApzsMALiMpHV9lChoBmgJaA9DCK2nVl9dley/lIaUUpRoFUsyaBZHQKc6zpAUtZp1fZQoaAZoCWgPQwiKrgs/OB/8v5SGlFKUaBVLMmgWR0CnOo0IToMbdX2UKGgGaAloD0MI9fOmIhXG6L+UhpRSlGgVSzJoFkdApzxbJuEVWXV9lChoBmgJaA9DCPXyO01mvPW/lIaUUpRoFUsyaBZHQKc8Hvsqril1fZQoaAZoCWgPQwj/dtmvO93rv5SGlFKUaBVLMmgWR0CnO+GjKxLTdX2UKGgGaAloD0MIhgMhWcAE7r+UhpRSlGgVSzJoFkdApzugNXo1UHV9lChoBmgJaA9DCONRKuEJffe/lIaUUpRoFUsyaBZHQKc9hWBBiTd1fZQoaAZoCWgPQwhyp3Sw/m8BwJSGlFKUaBVLMmgWR0CnPUlOwgTzdX2UKGgGaAloD0MIniRdM/km87+UhpRSlGgVSzJoFkdApz0L2zv7WXV9lChoBmgJaA9DCAeWI2QgT/i/lIaUUpRoFUsyaBZHQKc8ym7aqS51fZQoaAZoCWgPQwgShZZ1/1jrv5SGlFKUaBVLMmgWR0CnPp7212JSdX2UKGgGaAloD0MIXcDLDBuFA8CUhpRSlGgVSzJoFkdApz5iy0KJEnV9lChoBmgJaA9DCLK8qx4wj/G/lIaUUpRoFUsyaBZHQKc+JU83dbh1fZQoaAZoCWgPQwh6Oey+Y/jnv5SGlFKUaBVLMmgWR0CnPeQL3K0VdX2UKGgGaAloD0MIjNgngGJkAsCUhpRSlGgVSzJoFkdApz+xlFtsN3V9lChoBmgJaA9DCJyLv+0J0v6/lIaUUpRoFUsyaBZHQKc/dUx20Rh1fZQoaAZoCWgPQwjoEg69xcPiv5SGlFKUaBVLMmgWR0CnPzfYSQHSdX2UKGgGaAloD0MIMuVDUDV65b+UhpRSlGgVSzJoFkdApz72dbxEv3V9lChoBmgJaA9DCPInKhvWVPi/lIaUUpRoFUsyaBZHQKdA1sqril11fZQoaAZoCWgPQwidvp6vWS7ov5SGlFKUaBVLMmgWR0CnQJrOzIFNdX2UKGgGaAloD0MIM6g2OBF98b+UhpRSlGgVSzJoFkdAp0Bd5v99+nV9lChoBmgJaA9DCEyN0M/U6+O/lIaUUpRoFUsyaBZHQKdAHIH1OCZ1fZQoaAZoCWgPQwj1K50PzxLvv5SGlFKUaBVLMmgWR0CnQeMBhhH9dX2UKGgGaAloD0MI/b/qyJHO5L+UhpRSlGgVSzJoFkdAp0Gmt2cJ+nV9lChoBmgJaA9DCEW7Cik/afO/lIaUUpRoFUsyaBZHQKdBaU9IPLB1fZQoaAZoCWgPQwi3JAfsanLrv5SGlFKUaBVLMmgWR0CnQSfjbSJCdX2UKGgGaAloD0MIMbPPY5Tn4L+UhpRSlGgVSzJoFkdAp0MLbcoH9nV9lChoBmgJaA9DCBdhinJpvPu/lIaUUpRoFUsyaBZHQKdC0C+10DF1fZQoaAZoCWgPQwgomgewyK/lv5SGlFKUaBVLMmgWR0CnQpOZLIxQdX2UKGgGaAloD0MIy2lPyTmx6L+UhpRSlGgVSzJoFkdAp0JSfHxSYXV9lChoBmgJaA9DCGAgCJCh4+2/lIaUUpRoFUsyaBZHQKdE1BBRhtt1fZQoaAZoCWgPQwjbheY6jXTyv5SGlFKUaBVLMmgWR0CnRJjSPU8WdX2UKGgGaAloD0MIsI14sptZ87+UhpRSlGgVSzJoFkdAp0RdX7tRenV9lChoBmgJaA9DCL4vLlVpy/W/lIaUUpRoFUsyaBZHQKdEHK8L8aZ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ef1fc419957e7440cc6686d3075d889462abd313963d4ac8d52600a9c6c9368
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70b61c675b33c0f1e2008e7f2672435b007ccb518d70bcc3dc054c1f9abf474a
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f6aa7696d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6aa76936f0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676300378514886794, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiD+0PnIuJDvCsQ8/iD+0PnIuJDvCsQ8/iD+0PnIuJDvCsQ8/iD+0PnIuJDvCsQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr9ygPzQ1Cb8xgM8/6+nKP5EKjD/eP+0+1Gf7PMI8Lj+TyIg/TnzAP9vjR7+rUVy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIP7Q+ci4kO8KxDz/2fmY8FmgBu98A2zuIP7Q+ci4kO8KxDz/2fmY8FmgBu98A2zuIP7Q+ci4kO8KxDz/2fmY8FmgBu98A2zuIP7Q+ci4kO8KxDz/2fmY8FmgBu98A2zuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3520472 0.00250521 0.5613061 ]\n [0.3520472 0.00250521 0.5613061 ]\n [0.3520472 0.00250521 0.5613061 ]\n [0.3520472 0.00250521 0.5613061 ]]", "desired_goal": "[[ 1.2567347 -0.53596807 1.6210996 ]\n [ 1.5852636 1.0940725 0.4633779 ]\n [ 0.03068916 0.6806146 1.068621 ]\n [ 1.5037935 -0.78082055 -0.86062115]]", "observation": "[[ 0.3520472 0.00250521 0.5613061 0.01406836 -0.00197459 0.00668345]\n [ 0.3520472 0.00250521 0.5613061 0.01406836 -0.00197459 0.00668345]\n [ 0.3520472 0.00250521 0.5613061 0.01406836 -0.00197459 0.00668345]\n [ 0.3520472 0.00250521 0.5613061 0.01406836 -0.00197459 0.00668345]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmr37vTTOCT5tgIA+QiUbvB9CV72k24s+H58rvfW2tb0pTkU+/U3tPJa7a7x/4Ds8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12292023 0.13457566 0.2509798 ]\n [-0.00946933 -0.05255329 0.2731601 ]\n [-0.0418998 -0.08872787 0.19268097]\n [ 0.02896785 -0.01438799 0.0114671 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXi7iOzHLDMCUhpRSlIwBbJRLMowBdJRHQK0NUZaV2Rt1fZQoaAZoCWgPQwiTGtoAbPAQwJSGlFKUaBVLMmgWR0CtDNskyDZldX2UKGgGaAloD0MIKZSFr68VDMCUhpRSlGgVSzJoFkdArQxmiWVu8HV9lChoBmgJaA9DCPLs8q0Pa/+/lIaUUpRoFUsyaBZHQK0L8MUAT7F1fZQoaAZoCWgPQwjFyf0ORbERwJSGlFKUaBVLMmgWR0CtDqGgam4zdX2UKGgGaAloD0MIc5zbhHulCcCUhpRSlGgVSzJoFkdArQ4qjesPrnV9lChoBmgJaA9DCGlRn+QO+xTAlIaUUpRoFUsyaBZHQK0Ntb7j1f51fZQoaAZoCWgPQwgZyol2FSIWwJSGlFKUaBVLMmgWR0CtDT9mYjSodX2UKGgGaAloD0MIChSxiGGXFMCUhpRSlGgVSzJoFkdArQ/UzfrKNnV9lChoBmgJaA9DCDI9YYkHhB7AlIaUUpRoFUsyaBZHQK0PXcXWOIZ1fZQoaAZoCWgPQwiKkpBI2xgQwJSGlFKUaBVLMmgWR0CtDumPgeijdX2UKGgGaAloD0MINxYUBmW6DcCUhpRSlGgVSzJoFkdArQ5zHKfWc3V9lChoBmgJaA9DCK0wfa8hKBDAlIaUUpRoFUsyaBZHQK0Q+r6LwWp1fZQoaAZoCWgPQwgvTny1o7gQwJSGlFKUaBVLMmgWR0CtEIOkk8ifdX2UKGgGaAloD0MIqwfMQ6acE8CUhpRSlGgVSzJoFkdArRAOQwK0D3V9lChoBmgJaA9DCNl6hnDMghDAlIaUUpRoFUsyaBZHQK0PmCiAUcp1fZQoaAZoCWgPQwhFZi5webwTwJSGlFKUaBVLMmgWR0CtEvoegctHdX2UKGgGaAloD0MIhCugUE//DMCUhpRSlGgVSzJoFkdArRKDkp7TlXV9lChoBmgJaA9DCNSYEHNJ9RDAlIaUUpRoFUsyaBZHQK0SD80k4WF1fZQoaAZoCWgPQwiGWP0RhqEJwJSGlFKUaBVLMmgWR0CtEZpq7AcldX2UKGgGaAloD0MIDRr6J7jIGsCUhpRSlGgVSzJoFkdArRTOyLQ5WHV9lChoBmgJaA9DCFHaG3xhQhbAlIaUUpRoFUsyaBZHQK0UWEzwc5t1fZQoaAZoCWgPQwh2ptB5jd0HwJSGlFKUaBVLMmgWR0CtE+OuaF23dX2UKGgGaAloD0MIa0Wb49zWE8CUhpRSlGgVSzJoFkdArRNuhsZYP3V9lChoBmgJaA9DCKRskbQbjRDAlIaUUpRoFUsyaBZHQK0WqbExZdR1fZQoaAZoCWgPQwidEaW9wdcgwJSGlFKUaBVLMmgWR0CtFjNeMQ2/dX2UKGgGaAloD0MI097gC5OpH8CUhpRSlGgVSzJoFkdArRW/IdU83nV9lChoBmgJaA9DCM+fNqrTkRHAlIaUUpRoFUsyaBZHQK0VSbiqABl1fZQoaAZoCWgPQwhlxAWgUXoDwJSGlFKUaBVLMmgWR0CtGNbrs0HhdX2UKGgGaAloD0MIi/7QzJMLBsCUhpRSlGgVSzJoFkdArRhh5eJHiHV9lChoBmgJaA9DCJIiMqziTQzAlIaUUpRoFUsyaBZHQK0X7ZTyaux1fZQoaAZoCWgPQwiZZOQs7HkWwJSGlFKUaBVLMmgWR0CtF3fzBhx6dX2UKGgGaAloD0MIBwySPq3yFsCUhpRSlGgVSzJoFkdArRreCPIXCXV9lChoBmgJaA9DCMnH7gIlJQzAlIaUUpRoFUsyaBZHQK0aZ5v99+h1fZQoaAZoCWgPQwhGByRh384YwJSGlFKUaBVLMmgWR0CtGfQR5C4SdX2UKGgGaAloD0MImRHeHoTQFcCUhpRSlGgVSzJoFkdArRl+Y+jdpXV9lChoBmgJaA9DCEELCRhdPgHAlIaUUpRoFUsyaBZHQK0d7OvdM0x1fZQoaAZoCWgPQwiOy7ipgQYRwJSGlFKUaBVLMmgWR0CtHXknssxxdX2UKGgGaAloD0MI0A64rpiR/L+UhpRSlGgVSzJoFkdArR0F61LJ0XV9lChoBmgJaA9DCFgAUwYOSAzAlIaUUpRoFUsyaBZHQK0ckleF+NN1fZQoaAZoCWgPQwizP1Bu2zcLwJSGlFKUaBVLMmgWR0CtIFvEsJ6ZdX2UKGgGaAloD0MIswxxrIsb/L+UhpRSlGgVSzJoFkdArR/mU2UB4nV9lChoBmgJaA9DCBJnRdREPwvAlIaUUpRoFUsyaBZHQK0fcawUxmF1fZQoaAZoCWgPQwhruTMTDCcDwJSGlFKUaBVLMmgWR0CtHvyFGoaUdX2UKGgGaAloD0MI9nzNctloHMCUhpRSlGgVSzJoFkdArSJv2ys0YXV9lChoBmgJaA9DCG9+w0SDtArAlIaUUpRoFUsyaBZHQK0h+Zpi7TV1fZQoaAZoCWgPQwhA3UCBdxISwJSGlFKUaBVLMmgWR0CtIYUfYBeYdX2UKGgGaAloD0MIS5F8JZCyA8CUhpRSlGgVSzJoFkdArSEQaBI4EXV9lChoBmgJaA9DCFLUmXtIeAzAlIaUUpRoFUsyaBZHQK0kWW4Vh1F1fZQoaAZoCWgPQwiYhuEjYtoRwJSGlFKUaBVLMmgWR0CtI+MpgCwKdX2UKGgGaAloD0MIW88Qjln2CsCUhpRSlGgVSzJoFkdArSNu12JSBXV9lChoBmgJaA9DCCs1e6AV2AnAlIaUUpRoFUsyaBZHQK0i+X9itq51fZQoaAZoCWgPQwhz1xLyQX8QwJSGlFKUaBVLMmgWR0CtJnzcqOLjdX2UKGgGaAloD0MIOGVuvhG9DMCUhpRSlGgVSzJoFkdArSYGc6Nly3V9lChoBmgJaA9DCLSOqiaIGhTAlIaUUpRoFUsyaBZHQK0lkgHNX5p1fZQoaAZoCWgPQwj+mUF8YIcNwJSGlFKUaBVLMmgWR0CtJRyElE7XdX2UKGgGaAloD0MIh2pKsg5HEcCUhpRSlGgVSzJoFkdArShYs5GSZHV9lChoBmgJaA9DCO0OKQZIdBbAlIaUUpRoFUsyaBZHQK0n4j4YaYN1fZQoaAZoCWgPQwi31EFeD4YPwJSGlFKUaBVLMmgWR0CtJ22saKk3dX2UKGgGaAloD0MIg/bq46H/G8CUhpRSlGgVSzJoFkdArSb4dMj/uXV9lChoBmgJaA9DCLXEymjkEwLAlIaUUpRoFUsyaBZHQK0pybPQfIV1fZQoaAZoCWgPQwgjTifZ6iIXwJSGlFKUaBVLMmgWR0CtKVKyGBWgdX2UKGgGaAloD0MIVWe1wB5zDcCUhpRSlGgVSzJoFkdArSjdOGj9GnV9lChoBmgJaA9DCA/Tvrm/+grAlIaUUpRoFUsyaBZHQK0oZtqpLmJ1fZQoaAZoCWgPQwhDke7nFEQKwJSGlFKUaBVLMmgWR0CtKt5bpu/DdX2UKGgGaAloD0MIt5bJcDw/H8CUhpRSlGgVSzJoFkdArSpnDUExI3V9lChoBmgJaA9DCBmRKLSsuxrAlIaUUpRoFUsyaBZHQK0p8ZUDMeR1fZQoaAZoCWgPQwj1SIPb2kIMwJSGlFKUaBVLMmgWR0CtKXshgVoIdX2UKGgGaAloD0MIB9Dv+zffE8CUhpRSlGgVSzJoFkdArSwIs5GSZHV9lChoBmgJaA9DCFn4+lqXmhHAlIaUUpRoFUsyaBZHQK0rkXgLqlh1fZQoaAZoCWgPQwgtXFZhM2AFwJSGlFKUaBVLMmgWR0CtKxwmeDnOdX2UKGgGaAloD0MIYRkbutkfDsCUhpRSlGgVSzJoFkdArSqlv60pmXV9lChoBmgJaA9DCOCe508b9QXAlIaUUpRoFUsyaBZHQK0tUarFOwh1fZQoaAZoCWgPQwjikuNO6WAQwJSGlFKUaBVLMmgWR0CtLNrkjopydX2UKGgGaAloD0MI1XlU/N/RBMCUhpRSlGgVSzJoFkdArSxlqnFYMnV9lChoBmgJaA9DCEmcFVETLRXAlIaUUpRoFUsyaBZHQK0r71RtP551fZQoaAZoCWgPQwgT8kHPZkUbwJSGlFKUaBVLMmgWR0CtLnQTM7lrdX2UKGgGaAloD0MIcsEZ/P0iEcCUhpRSlGgVSzJoFkdArS38xASnL3V9lChoBmgJaA9DCPwApDZxMhjAlIaUUpRoFUsyaBZHQK0th2oNutR1fZQoaAZoCWgPQwiTOZZ31ZMSwJSGlFKUaBVLMmgWR0CtLREJjUd8dX2UKGgGaAloD0MIw++mW3bIFsCUhpRSlGgVSzJoFkdArS+E8s+V1XV9lChoBmgJaA9DCIc0KnCyTRfAlIaUUpRoFUsyaBZHQK0vDmRNh3J1fZQoaAZoCWgPQwhTPgRVo9cWwJSGlFKUaBVLMmgWR0CtLpnoHLRsdX2UKGgGaAloD0MIwCK/fojdGMCUhpRSlGgVSzJoFkdArS4kNFz+33V9lChoBmgJaA9DCBDs+C8QZBXAlIaUUpRoFUsyaBZHQK0wm14Pf9B1fZQoaAZoCWgPQwh/TGvT2D4GwJSGlFKUaBVLMmgWR0CtMCQSamXPdX2UKGgGaAloD0MIcVXZd0WQEMCUhpRSlGgVSzJoFkdArS+uoo/iYXV9lChoBmgJaA9DCAsJGF3eHATAlIaUUpRoFUsyaBZHQK0vOEVWS2Z1fZQoaAZoCWgPQwhCXaRQFv4JwJSGlFKUaBVLMmgWR0CtMcp5eJHidX2UKGgGaAloD0MITwXc8/xpC8CUhpRSlGgVSzJoFkdArTFTjxTbWXV9lChoBmgJaA9DCPLvMy4cSA3AlIaUUpRoFUsyaBZHQK0w3oduHet1fZQoaAZoCWgPQwiKPEm6ZtILwJSGlFKUaBVLMmgWR0CtMGg13t8edX2UKGgGaAloD0MI1A5/TdaIB8CUhpRSlGgVSzJoFkdArTLe606YFHV9lChoBmgJaA9DCOCBAYQPRQPAlIaUUpRoFUsyaBZHQK0yZ/CIk7h1fZQoaAZoCWgPQwiDMSJRaFkJwJSGlFKUaBVLMmgWR0CtMfJ6Y3NtdX2UKGgGaAloD0MIrW2Kx0X1EcCUhpRSlGgVSzJoFkdArTF8Bfa6BnV9lChoBmgJaA9DCJCfjVw3NRjAlIaUUpRoFUsyaBZHQK00h7sOXmh1fZQoaAZoCWgPQwiqJ/OPvqkJwJSGlFKUaBVLMmgWR0CtNBGcWj46dX2UKGgGaAloD0MIZJEm3gF+GcCUhpRSlGgVSzJoFkdArTOc1hsqKHV9lChoBmgJaA9DCKN1VDVBhBTAlIaUUpRoFUsyaBZHQK0zJwy6+WZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f1919ade310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1919ad5c60>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676362399639948307, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAGInRPhUpuryFCQk/GInRPhUpuryFCQk/GInRPhUpuryFCQk/GInRPhUpuryFCQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA6t2NPrVOGj+fCZK/fjYrP8oZoD+6QUy/lCC6vx1cGj9iYXa/R0szvxN+L79eeLQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAYidE+FSm6vIUJCT9GAqE60NZgu5TD+LsYidE+FSm6vIUJCT9GAqE60NZgu5TD+LsYidE+FSm6vIUJCT9GAqE60NZgu5TD+LsYidE+FSm6vIUJCT9GAqE60NZgu5TD+LuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.40924907 -0.02272467 0.5353015 ]\n [ 0.40924907 -0.02272467 0.5353015 ]\n [ 0.40924907 -0.02272467 0.5353015 ]\n [ 0.40924907 -0.02272467 0.5353015 ]]", "desired_goal": "[[ 0.2770837 0.6027635 -1.1409186 ]\n [ 0.66880023 1.250787 -0.7978779 ]\n [-1.4541192 0.60296804 -0.96242344]\n [-0.7003674 -0.6855175 1.4099233 ]]", "observation": "[[ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]\n [ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]\n [ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]\n [ 0.40924907 -0.02272467 0.5353015 0.0012284 -0.00343077 -0.00759167]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXfWKPTlSfj3wHhQ+wqqWvPIRjL0Z2mU+aWhmPRnTx71etyk+AP88vRwjzLyuMhQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06785081 0.06209013 0.14464927]\n [-0.01839197 -0.0683936 0.22446479]\n [ 0.05625192 -0.09757061 0.16573855]\n [-0.04614162 -0.02491909 0.14472458]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFFrW/WOh77+UhpRSlIwBbJRLMowBdJRHQKclL5Ec81Z1fZQoaAZoCWgPQwjfN772zFIFwJSGlFKUaBVLMmgWR0CnJPR1gYxddX2UKGgGaAloD0MIQwJGlzcH+L+UhpRSlGgVSzJoFkdApyS5PqLS/nV9lChoBmgJaA9DCFuxv+yePPC/lIaUUpRoFUsyaBZHQKckeM5OrQx1fZQoaAZoCWgPQwhxzLIngY3zv5SGlFKUaBVLMmgWR0CnJwMaCL/CdX2UKGgGaAloD0MI275H/fUK/7+UhpRSlGgVSzJoFkdApybHz19ORHV9lChoBmgJaA9DCNkJL8GpbwjAlIaUUpRoFUsyaBZHQKcmizw+dLB1fZQoaAZoCWgPQwhbXOMz2b8NwJSGlFKUaBVLMmgWR0CnJkrBCUosdX2UKGgGaAloD0MI5ngFoieFA8CUhpRSlGgVSzJoFkdApyi/io86m3V9lChoBmgJaA9DCJSilXuBGfS/lIaUUpRoFUsyaBZHQKcohEMLF4t1fZQoaAZoCWgPQwgvpMNDGL/wv5SGlFKUaBVLMmgWR0CnKEehPCVKdX2UKGgGaAloD0MIlGdeDruPAsCUhpRSlGgVSzJoFkdApygHX05EMXV9lChoBmgJaA9DCOLnvwevnfq/lIaUUpRoFUsyaBZHQKcqm4kNWlx1fZQoaAZoCWgPQwhbQ6m9iHb9v5SGlFKUaBVLMmgWR0CnKmBQ3xWldX2UKGgGaAloD0MIaqZ7ndSX47+UhpRSlGgVSzJoFkdApyoj9/BnBnV9lChoBmgJaA9DCEiHhzB+ugPAlIaUUpRoFUsyaBZHQKcp42NvOyF1fZQoaAZoCWgPQwgmxjL9EjH8v5SGlFKUaBVLMmgWR0CnLHJoCdSVdX2UKGgGaAloD0MII6DCEaSyAsCUhpRSlGgVSzJoFkdApyw3SSeRP3V9lChoBmgJaA9DCNy5MNKLGv6/lIaUUpRoFUsyaBZHQKcr+vgWJrN1fZQoaAZoCWgPQwgcJ4V5jzPzv5SGlFKUaBVLMmgWR0CnK7pfx+a0dX2UKGgGaAloD0MIdAzIXu9+9b+UhpRSlGgVSzJoFkdApy7nRsuWbHV9lChoBmgJaA9DCCcuxysQPQPAlIaUUpRoFUsyaBZHQKcuq+i8Fpx1fZQoaAZoCWgPQwi5+xwfLU7yv5SGlFKUaBVLMmgWR0CnLm9lmOENdX2UKGgGaAloD0MIoQ+WsaF7A8CUhpRSlGgVSzJoFkdApy4t+b3GoHV9lChoBmgJaA9DCDLH8q56gPa/lIaUUpRoFUsyaBZHQKcwHyzXz191fZQoaAZoCWgPQwjVPEfku9T+v5SGlFKUaBVLMmgWR0CnL+OxB3RpdX2UKGgGaAloD0MIuypQi8HjAsCUhpRSlGgVSzJoFkdApy+mQwK0D3V9lChoBmgJaA9DCH3O3a6X5v6/lIaUUpRoFUsyaBZHQKcvZN5+pfh1fZQoaAZoCWgPQwjXiGAcXPoAwJSGlFKUaBVLMmgWR0CnMTKNAC4jdX2UKGgGaAloD0MIVwbVBidi97+UhpRSlGgVSzJoFkdApzD2gOBlMHV9lChoBmgJaA9DCEqWk1D6ogHAlIaUUpRoFUsyaBZHQKcwuRyOrAB1fZQoaAZoCWgPQwiz0M5pFqgCwJSGlFKUaBVLMmgWR0CnMHewcHW0dX2UKGgGaAloD0MI+IpuvaZnAsCUhpRSlGgVSzJoFkdApzJOJYT0x3V9lChoBmgJaA9DCNPB+j+H+QHAlIaUUpRoFUsyaBZHQKcyEqaPS2J1fZQoaAZoCWgPQwieDI6SV+fov5SGlFKUaBVLMmgWR0CnMdVDKHO9dX2UKGgGaAloD0MILLtgcM2d+b+UhpRSlGgVSzJoFkdApzGUCzTnaHV9lChoBmgJaA9DCJWbqKW51QHAlIaUUpRoFUsyaBZHQKczid+Xqqx1fZQoaAZoCWgPQwgxCoLHt5cJwJSGlFKUaBVLMmgWR0CnM02cJ+lTdX2UKGgGaAloD0MI7KaU10qo9L+UhpRSlGgVSzJoFkdApzMQ2/BWP3V9lChoBmgJaA9DCITZBBiWP+a/lIaUUpRoFUsyaBZHQKcyz2SMcZN1fZQoaAZoCWgPQwgXDoRkAZPlv5SGlFKUaBVLMmgWR0CnNKgAIY3vdX2UKGgGaAloD0MIHSCYo8cPAMCUhpRSlGgVSzJoFkdApzRrwtrbg3V9lChoBmgJaA9DCBS0yeGTDvS/lIaUUpRoFUsyaBZHQKc0LklNUOx1fZQoaAZoCWgPQwi9NbBVgqUIwJSGlFKUaBVLMmgWR0CnM+zvy9VWdX2UKGgGaAloD0MI9MXeiy8a+r+UhpRSlGgVSzJoFkdApzW2ymhufnV9lChoBmgJaA9DCEIKnkKuVO2/lIaUUpRoFUsyaBZHQKc1eqTbFjx1fZQoaAZoCWgPQwibApmdRa/8v5SGlFKUaBVLMmgWR0CnNT0zj3mFdX2UKGgGaAloD0MIS+ZY3lXP/L+UhpRSlGgVSzJoFkdApzT750r9VHV9lChoBmgJaA9DCPhrskY9xOi/lIaUUpRoFUsyaBZHQKc2y01IiC91fZQoaAZoCWgPQwgKo1nZPqT2v5SGlFKUaBVLMmgWR0CnNo9Aood/dX2UKGgGaAloD0MIk3L3OT76AsCUhpRSlGgVSzJoFkdApzZR20Re1XV9lChoBmgJaA9DCJFgqpm1FPy/lIaUUpRoFUsyaBZHQKc2EGdqcmV1fZQoaAZoCWgPQwjAr5EkCFf9v5SGlFKUaBVLMmgWR0CnN99ic5KfdX2UKGgGaAloD0MI05/9SBHZAMCUhpRSlGgVSzJoFkdApzejPMSsbXV9lChoBmgJaA9DCKGfqdctwvm/lIaUUpRoFUsyaBZHQKc3Zd8Aq/d1fZQoaAZoCWgPQwiOklfnGBDpv5SGlFKUaBVLMmgWR0CnNySMUAT7dX2UKGgGaAloD0MIcQUU6umj/r+UhpRSlGgVSzJoFkdApzkbQqqfe3V9lChoBmgJaA9DCPbtJCL8C+y/lIaUUpRoFUsyaBZHQKc43whnrY51fZQoaAZoCWgPQwgwoYLDCyIJwJSGlFKUaBVLMmgWR0CnOKGmce8xdX2UKGgGaAloD0MIPDPBcK5h8L+UhpRSlGgVSzJoFkdApzhhRCQcP3V9lChoBmgJaA9DCPN0riglRPy/lIaUUpRoFUsyaBZHQKc6K57PY4B1fZQoaAZoCWgPQwggXWxaKcQDwJSGlFKUaBVLMmgWR0CnOe94FA3UdX2UKGgGaAloD0MILCtNSkG3/b+UhpRSlGgVSzJoFkdApzmx68g6l3V9lChoBmgJaA9DCCf5Eb9ijeW/lIaUUpRoFUsyaBZHQKc5cJMxoIx1fZQoaAZoCWgPQwhFf2jmyfX2v5SGlFKUaBVLMmgWR0CnO0g9Net0dX2UKGgGaAloD0MIaOxLNh4s87+UhpRSlGgVSzJoFkdApzsMALiMpHV9lChoBmgJaA9DCK2nVl9dley/lIaUUpRoFUsyaBZHQKc6zpAUtZp1fZQoaAZoCWgPQwiKrgs/OB/8v5SGlFKUaBVLMmgWR0CnOo0IToMbdX2UKGgGaAloD0MI9fOmIhXG6L+UhpRSlGgVSzJoFkdApzxbJuEVWXV9lChoBmgJaA9DCPXyO01mvPW/lIaUUpRoFUsyaBZHQKc8Hvsqril1fZQoaAZoCWgPQwj/dtmvO93rv5SGlFKUaBVLMmgWR0CnO+GjKxLTdX2UKGgGaAloD0MIhgMhWcAE7r+UhpRSlGgVSzJoFkdApzugNXo1UHV9lChoBmgJaA9DCONRKuEJffe/lIaUUpRoFUsyaBZHQKc9hWBBiTd1fZQoaAZoCWgPQwhyp3Sw/m8BwJSGlFKUaBVLMmgWR0CnPUlOwgTzdX2UKGgGaAloD0MIniRdM/km87+UhpRSlGgVSzJoFkdApz0L2zv7WXV9lChoBmgJaA9DCAeWI2QgT/i/lIaUUpRoFUsyaBZHQKc8ym7aqS51fZQoaAZoCWgPQwgShZZ1/1jrv5SGlFKUaBVLMmgWR0CnPp7212JSdX2UKGgGaAloD0MIXcDLDBuFA8CUhpRSlGgVSzJoFkdApz5iy0KJEnV9lChoBmgJaA9DCLK8qx4wj/G/lIaUUpRoFUsyaBZHQKc+JU83dbh1fZQoaAZoCWgPQwh6Oey+Y/jnv5SGlFKUaBVLMmgWR0CnPeQL3K0VdX2UKGgGaAloD0MIjNgngGJkAsCUhpRSlGgVSzJoFkdApz+xlFtsN3V9lChoBmgJaA9DCJyLv+0J0v6/lIaUUpRoFUsyaBZHQKc/dUx20Rh1fZQoaAZoCWgPQwjoEg69xcPiv5SGlFKUaBVLMmgWR0CnPzfYSQHSdX2UKGgGaAloD0MIMuVDUDV65b+UhpRSlGgVSzJoFkdApz72dbxEv3V9lChoBmgJaA9DCPInKhvWVPi/lIaUUpRoFUsyaBZHQKdA1sqril11fZQoaAZoCWgPQwidvp6vWS7ov5SGlFKUaBVLMmgWR0CnQJrOzIFNdX2UKGgGaAloD0MIM6g2OBF98b+UhpRSlGgVSzJoFkdAp0Bd5v99+nV9lChoBmgJaA9DCEyN0M/U6+O/lIaUUpRoFUsyaBZHQKdAHIH1OCZ1fZQoaAZoCWgPQwj1K50PzxLvv5SGlFKUaBVLMmgWR0CnQeMBhhH9dX2UKGgGaAloD0MI/b/qyJHO5L+UhpRSlGgVSzJoFkdAp0Gmt2cJ+nV9lChoBmgJaA9DCEW7Cik/afO/lIaUUpRoFUsyaBZHQKdBaU9IPLB1fZQoaAZoCWgPQwi3JAfsanLrv5SGlFKUaBVLMmgWR0CnQSfjbSJCdX2UKGgGaAloD0MIMbPPY5Tn4L+UhpRSlGgVSzJoFkdAp0MLbcoH9nV9lChoBmgJaA9DCBdhinJpvPu/lIaUUpRoFUsyaBZHQKdC0C+10DF1fZQoaAZoCWgPQwgomgewyK/lv5SGlFKUaBVLMmgWR0CnQpOZLIxQdX2UKGgGaAloD0MIy2lPyTmx6L+UhpRSlGgVSzJoFkdAp0JSfHxSYXV9lChoBmgJaA9DCGAgCJCh4+2/lIaUUpRoFUsyaBZHQKdE1BBRhtt1fZQoaAZoCWgPQwjbheY6jXTyv5SGlFKUaBVLMmgWR0CnRJjSPU8WdX2UKGgGaAloD0MIsI14sptZ87+UhpRSlGgVSzJoFkdAp0RdX7tRenV9lChoBmgJaA9DCL4vLlVpy/W/lIaUUpRoFUsyaBZHQKdEHK8L8aZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.8941999291069805, "std_reward": 0.2889007741216099, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-14T09:02:57.598475"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:859dcf29cc9e8f660ecebb12081f31292238a1fe11bfc05a2d7cb15139df9341
|
3 |
size 3056
|