File size: 4,506 Bytes
c72e80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from threading import Thread
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline,
    TextIteratorStreamer,
)
import torch

from LLM.chat import Chat
from baseHandler import BaseHandler
from rich.console import Console
import logging
from nltk import sent_tokenize

logger = logging.getLogger(__name__)

console = Console()


WHISPER_LANGUAGE_TO_LLM_LANGUAGE = {
    "en": "english",
    "fr": "french",
    "es": "spanish",
    "zh": "chinese",
    "ja": "japanese",
    "ko": "korean",
}

class LanguageModelHandler(BaseHandler):
    """
    Handles the language model part.
    """

    def setup(
        self,
        model_name="microsoft/Phi-3-mini-4k-instruct",
        device="cuda",
        torch_dtype="float16",
        gen_kwargs={},
        user_role="user",
        chat_size=1,
        init_chat_role=None,
        init_chat_prompt="You are a helpful AI assistant.",
    ):
        self.device = device
        self.torch_dtype = getattr(torch, torch_dtype)

        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name, torch_dtype=torch_dtype, trust_remote_code=True
        ).to(device)
        self.pipe = pipeline(
            "text-generation", model=self.model, tokenizer=self.tokenizer, device=device
        )
        self.streamer = TextIteratorStreamer(
            self.tokenizer,
            skip_prompt=True,
            skip_special_tokens=True,
        )
        self.gen_kwargs = {
            "streamer": self.streamer,
            "return_full_text": False,
            **gen_kwargs,
        }

        self.chat = Chat(chat_size)
        if init_chat_role:
            if not init_chat_prompt:
                raise ValueError(
                    "An initial promt needs to be specified when setting init_chat_role."
                )
            self.chat.init_chat({"role": init_chat_role, "content": init_chat_prompt})
        self.user_role = user_role

        self.warmup()

    def warmup(self):
        logger.info(f"Warming up {self.__class__.__name__}")

        dummy_input_text = "Repeat the word 'home'."
        dummy_chat = [{"role": self.user_role, "content": dummy_input_text}]
        warmup_gen_kwargs = {
            "min_new_tokens": self.gen_kwargs["min_new_tokens"],
            "max_new_tokens": self.gen_kwargs["max_new_tokens"],
            **self.gen_kwargs,
        }

        n_steps = 2

        if self.device == "cuda":
            start_event = torch.cuda.Event(enable_timing=True)
            end_event = torch.cuda.Event(enable_timing=True)
            torch.cuda.synchronize()
            start_event.record()

        for _ in range(n_steps):
            thread = Thread(
                target=self.pipe, args=(dummy_chat,), kwargs=warmup_gen_kwargs
            )
            thread.start()
            for _ in self.streamer:
                pass

        if self.device == "cuda":
            end_event.record()
            torch.cuda.synchronize()

            logger.info(
                f"{self.__class__.__name__}:  warmed up! time: {start_event.elapsed_time(end_event) * 1e-3:.3f} s"
            )

    def process(self, prompt):
        logger.debug("infering language model...")
        language_code = None
        if isinstance(prompt, tuple):
            prompt, language_code = prompt
            prompt = f"Please reply to my message in {WHISPER_LANGUAGE_TO_LLM_LANGUAGE[language_code]}. " + prompt

        self.chat.append({"role": self.user_role, "content": prompt})
        thread = Thread(
            target=self.pipe, args=(self.chat.to_list(),), kwargs=self.gen_kwargs
        )
        thread.start()
        if self.device == "mps":
            generated_text = ""
            for new_text in self.streamer:
                generated_text += new_text
            printable_text = generated_text
            torch.mps.empty_cache()
        else:
            generated_text, printable_text = "", ""
            for new_text in self.streamer:
                generated_text += new_text
                printable_text += new_text
                sentences = sent_tokenize(printable_text)
                if len(sentences) > 1:
                    yield (sentences[0], language_code)
                    printable_text = new_text

        self.chat.append({"role": "assistant", "content": generated_text})

        # don't forget last sentence
        yield (printable_text, language_code)