File size: 7,022 Bytes
c72e80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from threading import Thread
from time import perf_counter
from baseHandler import BaseHandler
import numpy as np
import torch
from transformers import (
    AutoTokenizer,
)
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
import librosa
import logging
from rich.console import Console
from utils.utils import next_power_of_2
from transformers.utils.import_utils import (
    is_flash_attn_2_available,
)

torch._inductor.config.fx_graph_cache = True
# mind about this parameter ! should be >= 2 * number of padded prompt sizes for TTS
torch._dynamo.config.cache_size_limit = 15

logger = logging.getLogger(__name__)

console = Console()


if not is_flash_attn_2_available() and torch.cuda.is_available():
    logger.warn(
        """Parler TTS works best with flash attention 2, but is not installed
        Given that CUDA is available in this system, you can install flash attention 2 with `uv pip install flash-attn --no-build-isolation`"""
    )


class ParlerTTSHandler(BaseHandler):
    def setup(
        self,
        should_listen,
        model_name="ylacombe/parler-tts-mini-jenny-30H",
        device="cuda",
        torch_dtype="float16",
        compile_mode=None,
        gen_kwargs={},
        max_prompt_pad_length=8,
        description=(
            "A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. "
            "She speaks very fast."
        ),
        play_steps_s=1,
        blocksize=512,
    ):
        self.should_listen = should_listen
        self.device = device
        self.torch_dtype = getattr(torch, torch_dtype)
        self.gen_kwargs = gen_kwargs
        self.compile_mode = compile_mode
        self.max_prompt_pad_length = max_prompt_pad_length
        self.description = description

        self.description_tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.prompt_tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = ParlerTTSForConditionalGeneration.from_pretrained(
            model_name, torch_dtype=self.torch_dtype
        ).to(device)

        framerate = self.model.audio_encoder.config.frame_rate
        self.play_steps = int(framerate * play_steps_s)
        self.blocksize = blocksize

        if self.compile_mode not in (None, "default"):
            logger.warning(
                "Torch compilation modes that captures CUDA graphs are not yet compatible with the TTS part. Reverting to 'default'"
            )
            self.compile_mode = "default"

        if self.compile_mode:
            self.model.generation_config.cache_implementation = "static"
            self.model.forward = torch.compile(
                self.model.forward, mode=self.compile_mode, fullgraph=True
            )

        self.warmup()

    def prepare_model_inputs(
        self,
        prompt,
        max_length_prompt=50,
        pad=False,
    ):
        pad_args_prompt = (
            {"padding": "max_length", "max_length": max_length_prompt} if pad else {}
        )

        tokenized_description = self.description_tokenizer(
            self.description, return_tensors="pt"
        )
        input_ids = tokenized_description.input_ids.to(self.device)
        attention_mask = tokenized_description.attention_mask.to(self.device)

        tokenized_prompt = self.prompt_tokenizer(
            prompt, return_tensors="pt", **pad_args_prompt
        )
        prompt_input_ids = tokenized_prompt.input_ids.to(self.device)
        prompt_attention_mask = tokenized_prompt.attention_mask.to(self.device)

        gen_kwargs = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "prompt_input_ids": prompt_input_ids,
            "prompt_attention_mask": prompt_attention_mask,
            **self.gen_kwargs,
        }

        return gen_kwargs

    def warmup(self):
        logger.info(f"Warming up {self.__class__.__name__}")

        if self.device == "cuda":
            start_event = torch.cuda.Event(enable_timing=True)
            end_event = torch.cuda.Event(enable_timing=True)

        # 2 warmup steps for no compile or compile mode with CUDA graphs capture
        n_steps = 1 if self.compile_mode == "default" else 2

        if self.device == "cuda":
            torch.cuda.synchronize()
            start_event.record()
        if self.compile_mode:
            pad_lengths = [2**i for i in range(2, self.max_prompt_pad_length)]
            for pad_length in pad_lengths[::-1]:
                model_kwargs = self.prepare_model_inputs(
                    "dummy prompt", max_length_prompt=pad_length, pad=True
                )
                for _ in range(n_steps):
                    _ = self.model.generate(**model_kwargs)
                logger.info(f"Warmed up length {pad_length} tokens!")
        else:
            model_kwargs = self.prepare_model_inputs("dummy prompt")
            for _ in range(n_steps):
                _ = self.model.generate(**model_kwargs)

        if self.device == "cuda":
            end_event.record()
            torch.cuda.synchronize()
            logger.info(
                f"{self.__class__.__name__}:  warmed up! time: {start_event.elapsed_time(end_event) * 1e-3:.3f} s"
            )

    def process(self, llm_sentence):
        if isinstance(llm_sentence, tuple):
            llm_sentence, _ = llm_sentence
            
        console.print(f"[green]ASSISTANT: {llm_sentence}")
        nb_tokens = len(self.prompt_tokenizer(llm_sentence).input_ids)

        pad_args = {}
        if self.compile_mode:
            # pad to closest upper power of two
            pad_length = next_power_of_2(nb_tokens)
            logger.debug(f"padding to {pad_length}")
            pad_args["pad"] = True
            pad_args["max_length_prompt"] = pad_length

        tts_gen_kwargs = self.prepare_model_inputs(
            llm_sentence,
            **pad_args,
        )

        streamer = ParlerTTSStreamer(
            self.model, device=self.device, play_steps=self.play_steps
        )
        tts_gen_kwargs = {"streamer": streamer, **tts_gen_kwargs}
        torch.manual_seed(0)
        thread = Thread(target=self.model.generate, kwargs=tts_gen_kwargs)
        thread.start()

        for i, audio_chunk in enumerate(streamer):
            global pipeline_start
            if i == 0 and "pipeline_start" in globals():
                logger.info(
                    f"Time to first audio: {perf_counter() - pipeline_start:.3f}"
                )
            audio_chunk = librosa.resample(audio_chunk, orig_sr=44100, target_sr=16000)
            audio_chunk = (audio_chunk * 32768).astype(np.int16)
            for i in range(0, len(audio_chunk), self.blocksize):
                yield np.pad(
                    audio_chunk[i : i + self.blocksize],
                    (0, self.blocksize - len(audio_chunk[i : i + self.blocksize])),
                )

        self.should_listen.set()