File size: 7,022 Bytes
c72e80d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
from threading import Thread
from time import perf_counter
from baseHandler import BaseHandler
import numpy as np
import torch
from transformers import (
AutoTokenizer,
)
from parler_tts import ParlerTTSForConditionalGeneration, ParlerTTSStreamer
import librosa
import logging
from rich.console import Console
from utils.utils import next_power_of_2
from transformers.utils.import_utils import (
is_flash_attn_2_available,
)
torch._inductor.config.fx_graph_cache = True
# mind about this parameter ! should be >= 2 * number of padded prompt sizes for TTS
torch._dynamo.config.cache_size_limit = 15
logger = logging.getLogger(__name__)
console = Console()
if not is_flash_attn_2_available() and torch.cuda.is_available():
logger.warn(
"""Parler TTS works best with flash attention 2, but is not installed
Given that CUDA is available in this system, you can install flash attention 2 with `uv pip install flash-attn --no-build-isolation`"""
)
class ParlerTTSHandler(BaseHandler):
def setup(
self,
should_listen,
model_name="ylacombe/parler-tts-mini-jenny-30H",
device="cuda",
torch_dtype="float16",
compile_mode=None,
gen_kwargs={},
max_prompt_pad_length=8,
description=(
"A female speaker with a slightly low-pitched voice delivers her words quite expressively, in a very confined sounding environment with clear audio quality. "
"She speaks very fast."
),
play_steps_s=1,
blocksize=512,
):
self.should_listen = should_listen
self.device = device
self.torch_dtype = getattr(torch, torch_dtype)
self.gen_kwargs = gen_kwargs
self.compile_mode = compile_mode
self.max_prompt_pad_length = max_prompt_pad_length
self.description = description
self.description_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.prompt_tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = ParlerTTSForConditionalGeneration.from_pretrained(
model_name, torch_dtype=self.torch_dtype
).to(device)
framerate = self.model.audio_encoder.config.frame_rate
self.play_steps = int(framerate * play_steps_s)
self.blocksize = blocksize
if self.compile_mode not in (None, "default"):
logger.warning(
"Torch compilation modes that captures CUDA graphs are not yet compatible with the TTS part. Reverting to 'default'"
)
self.compile_mode = "default"
if self.compile_mode:
self.model.generation_config.cache_implementation = "static"
self.model.forward = torch.compile(
self.model.forward, mode=self.compile_mode, fullgraph=True
)
self.warmup()
def prepare_model_inputs(
self,
prompt,
max_length_prompt=50,
pad=False,
):
pad_args_prompt = (
{"padding": "max_length", "max_length": max_length_prompt} if pad else {}
)
tokenized_description = self.description_tokenizer(
self.description, return_tensors="pt"
)
input_ids = tokenized_description.input_ids.to(self.device)
attention_mask = tokenized_description.attention_mask.to(self.device)
tokenized_prompt = self.prompt_tokenizer(
prompt, return_tensors="pt", **pad_args_prompt
)
prompt_input_ids = tokenized_prompt.input_ids.to(self.device)
prompt_attention_mask = tokenized_prompt.attention_mask.to(self.device)
gen_kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"prompt_input_ids": prompt_input_ids,
"prompt_attention_mask": prompt_attention_mask,
**self.gen_kwargs,
}
return gen_kwargs
def warmup(self):
logger.info(f"Warming up {self.__class__.__name__}")
if self.device == "cuda":
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
# 2 warmup steps for no compile or compile mode with CUDA graphs capture
n_steps = 1 if self.compile_mode == "default" else 2
if self.device == "cuda":
torch.cuda.synchronize()
start_event.record()
if self.compile_mode:
pad_lengths = [2**i for i in range(2, self.max_prompt_pad_length)]
for pad_length in pad_lengths[::-1]:
model_kwargs = self.prepare_model_inputs(
"dummy prompt", max_length_prompt=pad_length, pad=True
)
for _ in range(n_steps):
_ = self.model.generate(**model_kwargs)
logger.info(f"Warmed up length {pad_length} tokens!")
else:
model_kwargs = self.prepare_model_inputs("dummy prompt")
for _ in range(n_steps):
_ = self.model.generate(**model_kwargs)
if self.device == "cuda":
end_event.record()
torch.cuda.synchronize()
logger.info(
f"{self.__class__.__name__}: warmed up! time: {start_event.elapsed_time(end_event) * 1e-3:.3f} s"
)
def process(self, llm_sentence):
if isinstance(llm_sentence, tuple):
llm_sentence, _ = llm_sentence
console.print(f"[green]ASSISTANT: {llm_sentence}")
nb_tokens = len(self.prompt_tokenizer(llm_sentence).input_ids)
pad_args = {}
if self.compile_mode:
# pad to closest upper power of two
pad_length = next_power_of_2(nb_tokens)
logger.debug(f"padding to {pad_length}")
pad_args["pad"] = True
pad_args["max_length_prompt"] = pad_length
tts_gen_kwargs = self.prepare_model_inputs(
llm_sentence,
**pad_args,
)
streamer = ParlerTTSStreamer(
self.model, device=self.device, play_steps=self.play_steps
)
tts_gen_kwargs = {"streamer": streamer, **tts_gen_kwargs}
torch.manual_seed(0)
thread = Thread(target=self.model.generate, kwargs=tts_gen_kwargs)
thread.start()
for i, audio_chunk in enumerate(streamer):
global pipeline_start
if i == 0 and "pipeline_start" in globals():
logger.info(
f"Time to first audio: {perf_counter() - pipeline_start:.3f}"
)
audio_chunk = librosa.resample(audio_chunk, orig_sr=44100, target_sr=16000)
audio_chunk = (audio_chunk * 32768).astype(np.int16)
for i in range(0, len(audio_chunk), self.blocksize):
yield np.pad(
audio_chunk[i : i + self.blocksize],
(0, self.blocksize - len(audio_chunk[i : i + self.blocksize])),
)
self.should_listen.set()
|