File size: 4,841 Bytes
967aebb
c72e80d
 
 
2d00549
c72e80d
2d00549
c72e80d
c4bb76f
c72e80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6f039f
c72e80d
 
2d00549
 
 
 
 
 
 
 
 
 
c72e80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d00549
 
 
 
 
 
 
 
 
 
 
 
c72e80d
 
 
 
 
 
 
 
 
 
2d00549
 
 
 
c72e80d
f6f039f
c72e80d
 
 
 
 
 
 
 
 
 
 
 
 
2d00549
 
c72e80d
 
2d00549
c72e80d
2d00549
 
 
 
 
c4bb76f
 
 
 
c72e80d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from typing import Dict, Any, List, Generator
import torch
import os
import logging
from s2s_pipeline import main, prepare_all_args, get_default_arguments, setup_logger, initialize_queues_and_events, build_pipeline
import numpy as np
from queue import Queue, Empty
import threading
import base64

class EndpointHandler:
    def __init__(self, path=""):
        (
            self.module_kwargs,
            self.socket_receiver_kwargs,
            self.socket_sender_kwargs,
            self.vad_handler_kwargs,
            self.whisper_stt_handler_kwargs,
            self.paraformer_stt_handler_kwargs,
            self.language_model_handler_kwargs,
            self.mlx_language_model_handler_kwargs,
            self.parler_tts_handler_kwargs,
            self.melo_tts_handler_kwargs,
            self.chat_tts_handler_kwargs,
        ) = get_default_arguments(mode='none', lm_model_name='meta-llama/Meta-Llama-3.1-8B-Instruct', log_level='DEBUG')
        setup_logger(self.module_kwargs.log_level)

        prepare_all_args(
            self.module_kwargs,
            self.whisper_stt_handler_kwargs,
            self.paraformer_stt_handler_kwargs,
            self.language_model_handler_kwargs,
            self.mlx_language_model_handler_kwargs,
            self.parler_tts_handler_kwargs,
            self.melo_tts_handler_kwargs,
            self.chat_tts_handler_kwargs,
        )

        self.queues_and_events = initialize_queues_and_events()

        self.pipeline_manager = build_pipeline(
            self.module_kwargs,
            self.socket_receiver_kwargs,
            self.socket_sender_kwargs,
            self.vad_handler_kwargs,
            self.whisper_stt_handler_kwargs,
            self.paraformer_stt_handler_kwargs,
            self.language_model_handler_kwargs,
            self.mlx_language_model_handler_kwargs,
            self.parler_tts_handler_kwargs,
            self.melo_tts_handler_kwargs,
            self.chat_tts_handler_kwargs,
            self.queues_and_events,
        )

        self.pipeline_manager.start()

        # Add a new queue for collecting the final output
        self.final_output_queue = Queue()

    def _collect_output(self):
        while True:
            try:
                output = self.queues_and_events['send_audio_chunks_queue'].get(timeout=5)  # 2-second timeout
                if isinstance(output, (str, bytes)) and output in (b"END", "END"):
                    self.final_output_queue.put("END")
                    break
                elif isinstance(output, np.ndarray):
                    self.final_output_queue.put(output.tobytes())
                else:
                    self.final_output_queue.put(output)
            except Empty:
                # If no output for 2 seconds, assume processing is complete
                self.final_output_queue.put("END")
                break

    def __call__(self, data: Dict[str, Any]) -> Generator[Dict[str, Any], None, None]:
        """
        Args:
            data (Dict[str, Any]): The input data containing the necessary arguments.
        
        Returns:
            Generator[Dict[str, Any], None, None]: A generator yielding output chunks from the model or pipeline.
        """
        # Start a thread to collect the final output
        self.output_collector_thread = threading.Thread(target=self._collect_output)
        self.output_collector_thread.start()

        input_type = data.get("input_type", "text")
        input_data = data.get("inputs", "")

        if input_type == "speech":
            # Convert input audio data to numpy array
            audio_array = np.frombuffer(input_data, dtype=np.int16)
            
            # Put audio data into the recv_audio_chunks_queue
            self.queues_and_events['recv_audio_chunks_queue'].put(audio_array.tobytes())
        elif input_type == "text":
            # Put text data directly into the text_prompt_queue
            self.queues_and_events['text_prompt_queue'].put(input_data)
        else:
            raise ValueError(f"Unsupported input type: {input_type}")

        # Collect all output chunks
        output_chunks = []
        while True:
            chunk = self.final_output_queue.get()
            if chunk == "END":
                break
            output_chunks.append(chunk)

        # Combine all audio chunks into a single byte string
        combined_audio = b''.join(output_chunks)

        # Encode the combined audio as Base64
        base64_audio = base64.b64encode(combined_audio).decode('utf-8')

        return {"output": base64_audio}

    def cleanup(self):
        # Stop the pipeline
        self.pipeline_manager.stop()
        
        # Stop the output collector thread
        self.queues_and_events['send_audio_chunks_queue'].put(b"END")
        self.output_collector_thread.join()