|
from typing import Dict, Any, List, Generator |
|
import torch |
|
import os |
|
import logging |
|
from s2s_pipeline import main, prepare_all_args, get_default_arguments, setup_logger, initialize_queues_and_events, build_pipeline |
|
import numpy as np |
|
from queue import Queue, Empty |
|
import threading |
|
import base64 |
|
import uuid |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
( |
|
self.module_kwargs, |
|
self.socket_receiver_kwargs, |
|
self.socket_sender_kwargs, |
|
self.vad_handler_kwargs, |
|
self.whisper_stt_handler_kwargs, |
|
self.paraformer_stt_handler_kwargs, |
|
self.language_model_handler_kwargs, |
|
self.mlx_language_model_handler_kwargs, |
|
self.parler_tts_handler_kwargs, |
|
self.melo_tts_handler_kwargs, |
|
self.chat_tts_handler_kwargs, |
|
) = get_default_arguments(mode='none', log_level='DEBUG', lm_model_name='meta-llama/Meta-Llama-3.1-8B-Instruct', tts_model_name='ylacombe/parler-tiny-v1-jenny') |
|
|
|
setup_logger(self.module_kwargs.log_level) |
|
|
|
prepare_all_args( |
|
self.module_kwargs, |
|
self.whisper_stt_handler_kwargs, |
|
self.paraformer_stt_handler_kwargs, |
|
self.language_model_handler_kwargs, |
|
self.mlx_language_model_handler_kwargs, |
|
self.parler_tts_handler_kwargs, |
|
self.melo_tts_handler_kwargs, |
|
self.chat_tts_handler_kwargs, |
|
) |
|
|
|
self.queues_and_events = initialize_queues_and_events() |
|
|
|
self.pipeline_manager = build_pipeline( |
|
self.module_kwargs, |
|
self.socket_receiver_kwargs, |
|
self.socket_sender_kwargs, |
|
self.vad_handler_kwargs, |
|
self.whisper_stt_handler_kwargs, |
|
self.paraformer_stt_handler_kwargs, |
|
self.language_model_handler_kwargs, |
|
self.mlx_language_model_handler_kwargs, |
|
self.parler_tts_handler_kwargs, |
|
self.melo_tts_handler_kwargs, |
|
self.chat_tts_handler_kwargs, |
|
self.queues_and_events, |
|
) |
|
|
|
self.pipeline_manager.start() |
|
|
|
|
|
self.final_output_queue = Queue() |
|
self.sessions = {} |
|
self.vad_chunk_size = 512 |
|
self.sample_rate = 16000 |
|
|
|
def _process_audio_chunk(self, audio_data: bytes, session_id: str): |
|
audio_array = np.frombuffer(audio_data, dtype=np.int16) |
|
|
|
|
|
chunks = [audio_array[i:i+self.vad_chunk_size] for i in range(0, len(audio_array), self.vad_chunk_size)] |
|
|
|
for chunk in chunks: |
|
if len(chunk) == self.vad_chunk_size: |
|
self.queues_and_events['recv_audio_chunks_queue'].put(chunk.tobytes()) |
|
elif len(chunk) < self.vad_chunk_size: |
|
|
|
padded_chunk = np.pad(chunk, (0, self.vad_chunk_size - len(chunk)), 'constant') |
|
self.queues_and_events['recv_audio_chunks_queue'].put(padded_chunk.tobytes()) |
|
|
|
def _collect_output(self, session_id): |
|
while True: |
|
try: |
|
output = self.queues_and_events['send_audio_chunks_queue'].get(timeout=2) |
|
if isinstance(output, (str, bytes)) and output in (b"END", "END"): |
|
self.sessions[session_id]['status'] = 'completed' |
|
break |
|
elif isinstance(output, np.ndarray): |
|
self.sessions[session_id]['chunks'].append(output.tobytes()) |
|
else: |
|
self.sessions[session_id]['chunks'].append(output) |
|
except Empty: |
|
continue |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
request_type = data.get("request_type", "start") |
|
|
|
if request_type == "start": |
|
return self._handle_start_request(data) |
|
elif request_type == "continue": |
|
return self._handle_continue_request(data) |
|
else: |
|
raise ValueError(f"Unsupported request type: {request_type}") |
|
|
|
def _handle_start_request(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
print("Starting new session") |
|
session_id = str(uuid.uuid4()) |
|
self.sessions[session_id] = { |
|
'status': 'new', |
|
'chunks': [], |
|
'last_sent_index': 0, |
|
'buffer': b'' |
|
} |
|
|
|
input_type = data.get("input_type", "text") |
|
input_data = data.get("inputs", "") |
|
|
|
if input_type == "speech": |
|
audio_bytes = base64.b64decode(input_data) |
|
self._process_audio_chunk(audio_bytes, session_id) |
|
elif input_type == "text": |
|
self.queues_and_events['text_prompt_queue'].put(input_data) |
|
else: |
|
raise ValueError(f"Unsupported input type: {input_type}") |
|
|
|
|
|
threading.Thread(target=self._collect_output, args=(session_id,)).start() |
|
|
|
return {"session_id": session_id, "status": "new"} |
|
|
|
def _handle_continue_request(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
session_id = data.get("session_id") |
|
if not session_id or session_id not in self.sessions: |
|
raise ValueError("Invalid or missing session_id") |
|
|
|
session = self.sessions[session_id] |
|
|
|
if not self.queues_and_events['should_listen'].is_set(): |
|
session['status'] = 'processing' |
|
elif "inputs" in data: |
|
input_data = data["inputs"] |
|
audio_bytes = base64.b64decode(input_data) |
|
self._process_audio_chunk(audio_bytes, session_id) |
|
|
|
chunks_to_send = session['chunks'][session['last_sent_index']:] |
|
session['last_sent_index'] = len(session['chunks']) |
|
|
|
if chunks_to_send: |
|
combined_audio = b''.join(chunks_to_send) |
|
base64_audio = base64.b64encode(combined_audio).decode('utf-8') |
|
return { |
|
"session_id": session_id, |
|
"status": session['status'], |
|
"output": base64_audio |
|
} |
|
else: |
|
return { |
|
"session_id": session_id, |
|
"status": session['status'], |
|
"output": None |
|
} |
|
|
|
def cleanup(self): |
|
|
|
self.pipeline_manager.stop() |
|
|
|
|
|
self.queues_and_events['send_audio_chunks_queue'].put(b"END") |
|
self.output_collector_thread.join() |