from typing import Dict, Any, List, Generator import torch import os import logging from s2s_pipeline import main, prepare_all_args, get_default_arguments, setup_logger, initialize_queues_and_events, build_pipeline import numpy as np from queue import Queue, Empty import threading import base64 class EndpointHandler: def __init__(self, path=""): ( self.module_kwargs, self.socket_receiver_kwargs, self.socket_sender_kwargs, self.vad_handler_kwargs, self.whisper_stt_handler_kwargs, self.paraformer_stt_handler_kwargs, self.language_model_handler_kwargs, self.mlx_language_model_handler_kwargs, self.parler_tts_handler_kwargs, self.melo_tts_handler_kwargs, self.chat_tts_handler_kwargs, ) = get_default_arguments(mode='none', log_level='DEBUG') setup_logger(self.module_kwargs.log_level) prepare_all_args( self.module_kwargs, self.whisper_stt_handler_kwargs, self.paraformer_stt_handler_kwargs, self.language_model_handler_kwargs, self.mlx_language_model_handler_kwargs, self.parler_tts_handler_kwargs, self.melo_tts_handler_kwargs, self.chat_tts_handler_kwargs, ) self.queues_and_events = initialize_queues_and_events() self.pipeline_manager = build_pipeline( self.module_kwargs, self.socket_receiver_kwargs, self.socket_sender_kwargs, self.vad_handler_kwargs, self.whisper_stt_handler_kwargs, self.paraformer_stt_handler_kwargs, self.language_model_handler_kwargs, self.mlx_language_model_handler_kwargs, self.parler_tts_handler_kwargs, self.melo_tts_handler_kwargs, self.chat_tts_handler_kwargs, self.queues_and_events, ) self.pipeline_manager.start() # Add a new queue for collecting the final output self.final_output_queue = Queue() def _collect_output(self): while True: try: output = self.queues_and_events['send_audio_chunks_queue'].get(timeout=5) # 2-second timeout if isinstance(output, (str, bytes)) and output in (b"END", "END"): self.final_output_queue.put("END") break elif isinstance(output, np.ndarray): self.final_output_queue.put(output.tobytes()) else: self.final_output_queue.put(output) except Empty: # If no output for 2 seconds, assume processing is complete self.final_output_queue.put("END") break def __call__(self, data: Dict[str, Any]) -> Generator[Dict[str, Any], None, None]: """ Args: data (Dict[str, Any]): The input data containing the necessary arguments. Returns: Generator[Dict[str, Any], None, None]: A generator yielding output chunks from the model or pipeline. """ # Start a thread to collect the final output self.output_collector_thread = threading.Thread(target=self._collect_output) self.output_collector_thread.start() input_type = data.get("input_type", "text") input_data = data.get("input", "") if input_type == "speech": # Convert input audio data to numpy array audio_array = np.frombuffer(input_data, dtype=np.int16) # Put audio data into the recv_audio_chunks_queue self.queues_and_events['recv_audio_chunks_queue'].put(audio_array.tobytes()) elif input_type == "text": # Put text data directly into the text_prompt_queue self.queues_and_events['text_prompt_queue'].put(input_data) else: raise ValueError(f"Unsupported input type: {input_type}") # Collect all output chunks output_chunks = [] while True: chunk = self.final_output_queue.get() if chunk == "END": break output_chunks.append(chunk) # Combine all audio chunks into a single byte string combined_audio = b''.join(output_chunks) # Encode the combined audio as Base64 base64_audio = base64.b64encode(combined_audio).decode('utf-8') return {"output": base64_audio} def cleanup(self): # Stop the pipeline self.pipeline_manager.stop() # Stop the output collector thread self.queues_and_events['send_audio_chunks_queue'].put(b"END") self.output_collector_thread.join()