import logging import os import sys from copy import copy from pathlib import Path from queue import Queue from threading import Event from typing import Optional from sys import platform from VAD.vad_handler import VADHandler from arguments_classes.chat_tts_arguments import ChatTTSHandlerArguments from arguments_classes.language_model_arguments import LanguageModelHandlerArguments from arguments_classes.mlx_language_model_arguments import ( MLXLanguageModelHandlerArguments, ) from arguments_classes.module_arguments import ModuleArguments from arguments_classes.paraformer_stt_arguments import ParaformerSTTHandlerArguments from arguments_classes.parler_tts_arguments import ParlerTTSHandlerArguments from arguments_classes.socket_receiver_arguments import SocketReceiverArguments from arguments_classes.socket_sender_arguments import SocketSenderArguments from arguments_classes.vad_arguments import VADHandlerArguments from arguments_classes.whisper_stt_arguments import WhisperSTTHandlerArguments from arguments_classes.melo_tts_arguments import MeloTTSHandlerArguments import torch import nltk from rich.console import Console from transformers import ( HfArgumentParser, ) from utils.thread_manager import ThreadManager # Ensure that the necessary NLTK resources are available try: nltk.data.find("tokenizers/punkt_tab") except (LookupError, OSError): nltk.download("punkt_tab") try: nltk.data.find("tokenizers/averaged_perceptron_tagger_eng") except (LookupError, OSError): nltk.download("averaged_perceptron_tagger_eng") # caching allows ~50% compilation time reduction # see https://docs.google.com/document/d/1y5CRfMLdwEoF1nTk9q8qEu1mgMUuUtvhklPKJ2emLU8/edit#heading=h.o2asbxsrp1ma CURRENT_DIR = Path(__file__).resolve().parent os.environ["TORCHINDUCTOR_CACHE_DIR"] = os.path.join(CURRENT_DIR, "tmp") console = Console() logging.getLogger("numba").setLevel(logging.WARNING) # quiet down numba logs def rename_args(args, prefix): """ Rename arguments by removing the prefix and prepares the gen_kwargs. """ gen_kwargs = {} for key in copy(args.__dict__): if key.startswith(prefix): value = args.__dict__.pop(key) new_key = key[len(prefix) + 1 :] # Remove prefix and underscore if new_key.startswith("gen_"): gen_kwargs[new_key[4:]] = value # Remove 'gen_' and add to dict else: args.__dict__[new_key] = value args.__dict__["gen_kwargs"] = gen_kwargs def get_default_arguments(**kwargs): default_args = [ ModuleArguments(), SocketReceiverArguments(), SocketSenderArguments(), VADHandlerArguments(), WhisperSTTHandlerArguments(), ParaformerSTTHandlerArguments(), LanguageModelHandlerArguments(), MLXLanguageModelHandlerArguments(), ParlerTTSHandlerArguments(), MeloTTSHandlerArguments(), ChatTTSHandlerArguments(), ] # Update arguments with provided kwargs for arg_obj in default_args: for key, value in kwargs.items(): if hasattr(arg_obj, key): setattr(arg_obj, key, value) return tuple(default_args) def parse_arguments(): parser = HfArgumentParser( ( ModuleArguments, SocketReceiverArguments, SocketSenderArguments, VADHandlerArguments, WhisperSTTHandlerArguments, ParaformerSTTHandlerArguments, LanguageModelHandlerArguments, MLXLanguageModelHandlerArguments, ParlerTTSHandlerArguments, MeloTTSHandlerArguments, ChatTTSHandlerArguments, ) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Parse configurations from a JSON file if specified return parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: # Parse arguments from command line if no JSON file is provided return parser.parse_args_into_dataclasses() def setup_logger(log_level): global logger logging.basicConfig( level=log_level.upper(), format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) logger = logging.getLogger(__name__) # torch compile logs if log_level == "debug": torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True) def optimal_mac_settings(mac_optimal_settings: Optional[str], *handler_kwargs): if mac_optimal_settings: for kwargs in handler_kwargs: if hasattr(kwargs, "device"): kwargs.device = "mps" if hasattr(kwargs, "mode"): kwargs.mode = "local" if hasattr(kwargs, "stt"): kwargs.stt = "whisper-mlx" if hasattr(kwargs, "llm"): kwargs.llm = "mlx-lm" if hasattr(kwargs, "tts"): kwargs.tts = "melo" def check_mac_settings(module_kwargs): if platform == "darwin": if module_kwargs.device == "cuda": raise ValueError( "Cannot use CUDA on macOS. Please set the device to 'cpu' or 'mps'." ) if module_kwargs.llm != "mlx-lm": logger.warning( "For macOS users, it is recommended to use mlx-lm. You can activate it by passing --llm mlx-lm." ) if module_kwargs.tts != "melo": logger.warning( "If you experiences issues generating the voice, considering setting the tts to melo." ) def overwrite_device_argument(common_device: Optional[str], *handler_kwargs): if common_device: for kwargs in handler_kwargs: if hasattr(kwargs, "lm_device"): kwargs.lm_device = common_device if hasattr(kwargs, "tts_device"): kwargs.tts_device = common_device if hasattr(kwargs, "stt_device"): kwargs.stt_device = common_device if hasattr(kwargs, "paraformer_stt_device"): kwargs.paraformer_stt_device = common_device def prepare_module_args(module_kwargs, *handler_kwargs): optimal_mac_settings(module_kwargs.local_mac_optimal_settings, module_kwargs) if platform == "darwin": check_mac_settings(module_kwargs) overwrite_device_argument(module_kwargs.device, *handler_kwargs) def prepare_all_args( module_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs, ): prepare_module_args( module_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs, ) rename_args(whisper_stt_handler_kwargs, "stt") rename_args(paraformer_stt_handler_kwargs, "paraformer_stt") rename_args(language_model_handler_kwargs, "lm") rename_args(mlx_language_model_handler_kwargs, "mlx_lm") rename_args(parler_tts_handler_kwargs, "tts") rename_args(melo_tts_handler_kwargs, "melo") rename_args(chat_tts_handler_kwargs, "chat_tts") def initialize_queues_and_events(): return { "stop_event": Event(), "should_listen": Event(), "recv_audio_chunks_queue": Queue(), "send_audio_chunks_queue": Queue(), "spoken_prompt_queue": Queue(), "text_prompt_queue": Queue(), "lm_response_queue": Queue(), } def build_pipeline( module_kwargs, socket_receiver_kwargs, socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs, queues_and_events, ): stop_event = queues_and_events["stop_event"] should_listen = queues_and_events["should_listen"] recv_audio_chunks_queue = queues_and_events["recv_audio_chunks_queue"] send_audio_chunks_queue = queues_and_events["send_audio_chunks_queue"] spoken_prompt_queue = queues_and_events["spoken_prompt_queue"] text_prompt_queue = queues_and_events["text_prompt_queue"] lm_response_queue = queues_and_events["lm_response_queue"] if module_kwargs.mode == "local": from connections.local_audio_streamer import LocalAudioStreamer local_audio_streamer = LocalAudioStreamer( input_queue=recv_audio_chunks_queue, output_queue=send_audio_chunks_queue ) comms_handlers = [local_audio_streamer] should_listen.set() elif module_kwargs.mode == "socket": from connections.socket_receiver import SocketReceiver from connections.socket_sender import SocketSender comms_handlers = [ SocketReceiver( stop_event, recv_audio_chunks_queue, should_listen, host=socket_receiver_kwargs.recv_host, port=socket_receiver_kwargs.recv_port, chunk_size=socket_receiver_kwargs.chunk_size, ), SocketSender( stop_event, send_audio_chunks_queue, host=socket_sender_kwargs.send_host, port=socket_sender_kwargs.send_port, ), ] else: comms_handlers = [] should_listen.set() vad = VADHandler( stop_event, queue_in=recv_audio_chunks_queue, queue_out=spoken_prompt_queue, setup_args=(should_listen,), setup_kwargs=vars(vad_handler_kwargs), ) stt = get_stt_handler(module_kwargs, stop_event, spoken_prompt_queue, text_prompt_queue, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs) lm = get_llm_handler(module_kwargs, stop_event, text_prompt_queue, lm_response_queue, language_model_handler_kwargs, mlx_language_model_handler_kwargs) tts = get_tts_handler(module_kwargs, stop_event, lm_response_queue, send_audio_chunks_queue, should_listen, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs) return ThreadManager([*comms_handlers, vad, stt, lm, tts]) def get_stt_handler(module_kwargs, stop_event, spoken_prompt_queue, text_prompt_queue, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs): if module_kwargs.stt == "whisper": from STT.whisper_stt_handler import WhisperSTTHandler return WhisperSTTHandler( stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(whisper_stt_handler_kwargs), ) elif module_kwargs.stt == "whisper-mlx": from STT.lightning_whisper_mlx_handler import LightningWhisperSTTHandler return LightningWhisperSTTHandler( stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(whisper_stt_handler_kwargs), ) elif module_kwargs.stt == "paraformer": from STT.paraformer_handler import ParaformerSTTHandler return ParaformerSTTHandler( stop_event, queue_in=spoken_prompt_queue, queue_out=text_prompt_queue, setup_kwargs=vars(paraformer_stt_handler_kwargs), ) else: raise ValueError("The STT should be either whisper, whisper-mlx, or paraformer.") def get_llm_handler(module_kwargs, stop_event, text_prompt_queue, lm_response_queue, language_model_handler_kwargs, mlx_language_model_handler_kwargs): if module_kwargs.llm == "transformers": from LLM.language_model import LanguageModelHandler return LanguageModelHandler( stop_event, queue_in=text_prompt_queue, queue_out=lm_response_queue, setup_kwargs=vars(language_model_handler_kwargs), ) elif module_kwargs.llm == "mlx-lm": from LLM.mlx_language_model import MLXLanguageModelHandler return MLXLanguageModelHandler( stop_event, queue_in=text_prompt_queue, queue_out=lm_response_queue, setup_kwargs=vars(mlx_language_model_handler_kwargs), ) else: raise ValueError("The LLM should be either transformers or mlx-lm") def get_tts_handler(module_kwargs, stop_event, lm_response_queue, send_audio_chunks_queue, should_listen, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs): if module_kwargs.tts == "parler": from TTS.parler_handler import ParlerTTSHandler return ParlerTTSHandler( stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(parler_tts_handler_kwargs), ) elif module_kwargs.tts == "melo": try: from TTS.melo_handler import MeloTTSHandler except RuntimeError as e: logger.error( "Error importing MeloTTSHandler. You might need to run: python -m unidic download" ) raise e return MeloTTSHandler( stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(melo_tts_handler_kwargs), ) elif module_kwargs.tts == "chatTTS": try: from TTS.chatTTS_handler import ChatTTSHandler except RuntimeError as e: logger.error("Error importing ChatTTSHandler") raise e return ChatTTSHandler( stop_event, queue_in=lm_response_queue, queue_out=send_audio_chunks_queue, setup_args=(should_listen,), setup_kwargs=vars(chat_tts_handler_kwargs), ) else: raise ValueError("The TTS should be either parler, melo or chatTTS") def main(): ( module_kwargs, socket_receiver_kwargs, socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs, ) = parse_arguments() setup_logger(module_kwargs.log_level) prepare_all_args( module_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs, ) queues_and_events = initialize_queues_and_events() pipeline_manager = build_pipeline( module_kwargs, socket_receiver_kwargs, socket_sender_kwargs, vad_handler_kwargs, whisper_stt_handler_kwargs, paraformer_stt_handler_kwargs, language_model_handler_kwargs, mlx_language_model_handler_kwargs, parler_tts_handler_kwargs, melo_tts_handler_kwargs, chat_tts_handler_kwargs, queues_and_events, ) try: pipeline_manager.start() except KeyboardInterrupt: pipeline_manager.stop() if __name__ == "__main__": main()