--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-brain-mri results: [] --- # vit-base-brain-mri This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the BrainMRI dataset. It achieves the following results on the evaluation set: - Loss: 1.0577 - Accuracy: 0.5990 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 72 | 0.9986 | 0.6098 | | 1.098 | 2.0 | 144 | 0.8445 | 0.7003 | | 0.7895 | 3.0 | 216 | 0.7318 | 0.7526 | | 0.7895 | 4.0 | 288 | 0.6842 | 0.7474 | | 0.6629 | 5.0 | 360 | 0.6328 | 0.7857 | | 0.5966 | 6.0 | 432 | 0.5957 | 0.8101 | | 0.5546 | 7.0 | 504 | 0.5646 | 0.8118 | | 0.5546 | 8.0 | 576 | 0.5647 | 0.8049 | | 0.5113 | 9.0 | 648 | 0.5340 | 0.8275 | | 0.4882 | 10.0 | 720 | 0.5190 | 0.8328 | | 0.4882 | 11.0 | 792 | 0.5197 | 0.8328 | | 0.4789 | 12.0 | 864 | 0.5002 | 0.8258 | | 0.4582 | 13.0 | 936 | 0.4957 | 0.8310 | | 0.4426 | 14.0 | 1008 | 0.4821 | 0.8310 | | 0.4426 | 15.0 | 1080 | 0.4706 | 0.8467 | | 0.4328 | 16.0 | 1152 | 0.4821 | 0.8153 | | 0.432 | 17.0 | 1224 | 0.4992 | 0.8275 | | 0.432 | 18.0 | 1296 | 0.4799 | 0.8345 | | 0.4196 | 19.0 | 1368 | 0.4838 | 0.8310 | | 0.4287 | 20.0 | 1440 | 0.4598 | 0.8659 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.0+cu121 - Tokenizers 0.19.1