andrewzhang505 commited on
Commit
30f390a
1 Parent(s): 3e92bb9

Upload . with huggingface_hub

Browse files
.summary/0/events.out.tfevents.1670186873.andrew-gpu ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e43b5413e94b50c334b2b093667bd2d720ba516a657964401af2294afa3c992b
3
+ size 70933
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sample-factory
3
+ tags:
4
+ - deep-reinforcement-learning
5
+ - reinforcement-learning
6
+ - sample-factory
7
+ model-index:
8
+ - name: APPO
9
+ results:
10
+ - task:
11
+ type: reinforcement-learning
12
+ name: reinforcement-learning
13
+ dataset:
14
+ name: mujoco_ant
15
+ type: mujoco_ant
16
+ metrics:
17
+ - type: mean_reward
18
+ value: 496.54 +/- 147.71
19
+ name: mean_reward
20
+ verified: false
21
+ ---
22
+
23
+ A(n) **APPO** model trained on the **mujoco_ant** environment.
24
+
25
+ This model was trained using Sample-Factory 2.0: https://github.com/alex-petrenko/sample-factory.
26
+ Documentation for how to use Sample-Factory can be found at https://www.samplefactory.dev/
27
+
28
+
29
+ ## Downloading the model
30
+
31
+ After installing Sample-Factory, download the model with:
32
+ ```
33
+ python -m sample_factory.huggingface.load_from_hub -r andrewzhang505/ant_test
34
+ ```
35
+
36
+
37
+ ## Using the model
38
+
39
+ To run the model after download, use the `enjoy` script corresponding to this environment:
40
+ ```
41
+ python -m sf_examples.mujoco.enjoy_mujoco --algo=APPO --env=mujoco_ant --train_dir=./train_dir --experiment=ant_test
42
+ ```
43
+
44
+
45
+ You can also upload models to the Hugging Face Hub using the same script with the `--push_to_hub` flag.
46
+ See https://www.samplefactory.dev/10-huggingface/huggingface/ for more details
47
+
48
+ ## Training with this model
49
+
50
+ To continue training with this model, use the `train` script corresponding to this environment:
51
+ ```
52
+ python -m sf_examples.mujoco.train_mujoco --algo=APPO --env=mujoco_ant --train_dir=./train_dir --experiment=ant_test --restart_behavior=resume --train_for_env_steps=10000000000
53
+ ```
54
+
55
+ Note, you may have to adjust `--train_for_env_steps` to a suitably high number as the experiment will resume at the number of steps it concluded at.
56
+
checkpoint_p0/best_000000928_475136_reward_321.313.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78a270ae0aaa4d62d1cc85c340c7bc1f5917af859419a227346a58323c755e74
3
+ size 89730
checkpoint_p0/checkpoint_000000928_475136.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:920e8e287f9e8564ad2da100a86f8050bdfa28428635072a4dc315076a25a387
3
+ size 89730
checkpoint_p0/checkpoint_000000952_487424.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df941a254fb9b62986160dad41587b474e099476b2f7e76299e09883dd0142dd
3
+ size 89730
config.json ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "help": false,
3
+ "algo": "APPO",
4
+ "env": "mujoco_ant",
5
+ "experiment": "ant_test",
6
+ "train_dir": "/home/andrew_huggingface_co/sample-factory/train_dir",
7
+ "restart_behavior": "resume",
8
+ "device": "gpu",
9
+ "seed": null,
10
+ "num_policies": 1,
11
+ "async_rl": false,
12
+ "serial_mode": false,
13
+ "batched_sampling": false,
14
+ "num_batches_to_accumulate": 2,
15
+ "worker_num_splits": 2,
16
+ "policy_workers_per_policy": 1,
17
+ "max_policy_lag": 1000,
18
+ "num_workers": 8,
19
+ "num_envs_per_worker": 8,
20
+ "batch_size": 1024,
21
+ "num_batches_per_epoch": 4,
22
+ "num_epochs": 2,
23
+ "rollout": 64,
24
+ "recurrence": 1,
25
+ "shuffle_minibatches": false,
26
+ "gamma": 0.99,
27
+ "reward_scale": 1,
28
+ "reward_clip": 1000.0,
29
+ "value_bootstrap": true,
30
+ "normalize_returns": true,
31
+ "exploration_loss_coeff": 0.0,
32
+ "value_loss_coeff": 1.3,
33
+ "kl_loss_coeff": 0.1,
34
+ "exploration_loss": "entropy",
35
+ "gae_lambda": 0.95,
36
+ "ppo_clip_ratio": 0.2,
37
+ "ppo_clip_value": 1.0,
38
+ "with_vtrace": false,
39
+ "vtrace_rho": 1.0,
40
+ "vtrace_c": 1.0,
41
+ "optimizer": "adam",
42
+ "adam_eps": 1e-06,
43
+ "adam_beta1": 0.9,
44
+ "adam_beta2": 0.999,
45
+ "max_grad_norm": 3.5,
46
+ "learning_rate": 0.00295,
47
+ "lr_schedule": "linear_decay",
48
+ "lr_schedule_kl_threshold": 0.008,
49
+ "obs_subtract_mean": 0.0,
50
+ "obs_scale": 1.0,
51
+ "normalize_input": true,
52
+ "normalize_input_keys": null,
53
+ "decorrelate_experience_max_seconds": 0,
54
+ "decorrelate_envs_on_one_worker": true,
55
+ "actor_worker_gpus": [],
56
+ "set_workers_cpu_affinity": true,
57
+ "force_envs_single_thread": false,
58
+ "default_niceness": 0,
59
+ "log_to_file": true,
60
+ "experiment_summaries_interval": 3,
61
+ "flush_summaries_interval": 30,
62
+ "stats_avg": 100,
63
+ "summaries_use_frameskip": true,
64
+ "heartbeat_interval": 20,
65
+ "heartbeat_reporting_interval": 180,
66
+ "train_for_env_steps": 10000000,
67
+ "train_for_seconds": 10000000000,
68
+ "save_every_sec": 15,
69
+ "keep_checkpoints": 2,
70
+ "load_checkpoint_kind": "latest",
71
+ "save_milestones_sec": -1,
72
+ "save_best_every_sec": 5,
73
+ "save_best_metric": "reward",
74
+ "save_best_after": 100000,
75
+ "benchmark": false,
76
+ "encoder_mlp_layers": [
77
+ 64,
78
+ 64
79
+ ],
80
+ "encoder_conv_architecture": "convnet_simple",
81
+ "encoder_conv_mlp_layers": [
82
+ 512
83
+ ],
84
+ "use_rnn": false,
85
+ "rnn_size": 512,
86
+ "rnn_type": "gru",
87
+ "rnn_num_layers": 1,
88
+ "decoder_mlp_layers": [],
89
+ "nonlinearity": "tanh",
90
+ "policy_initialization": "torch_default",
91
+ "policy_init_gain": 1.0,
92
+ "actor_critic_share_weights": true,
93
+ "adaptive_stddev": false,
94
+ "continuous_tanh_scale": 0.0,
95
+ "initial_stddev": 1.0,
96
+ "use_env_info_cache": false,
97
+ "env_gpu_actions": false,
98
+ "env_gpu_observations": true,
99
+ "env_frameskip": 1,
100
+ "env_framestack": 1,
101
+ "pixel_format": "CHW",
102
+ "use_record_episode_statistics": false,
103
+ "with_wandb": false,
104
+ "wandb_user": null,
105
+ "wandb_project": "sample_factory",
106
+ "wandb_group": null,
107
+ "wandb_job_type": "SF",
108
+ "wandb_tags": [],
109
+ "with_pbt": false,
110
+ "pbt_mix_policies_in_one_env": true,
111
+ "pbt_period_env_steps": 5000000,
112
+ "pbt_start_mutation": 20000000,
113
+ "pbt_replace_fraction": 0.3,
114
+ "pbt_mutation_rate": 0.15,
115
+ "pbt_replace_reward_gap": 0.1,
116
+ "pbt_replace_reward_gap_absolute": 1e-06,
117
+ "pbt_optimize_gamma": false,
118
+ "pbt_target_objective": "true_objective",
119
+ "pbt_perturb_min": 1.1,
120
+ "pbt_perturb_max": 1.5,
121
+ "command_line": "--algo=APPO --env=mujoco_ant --experiment=ant_test",
122
+ "cli_args": {
123
+ "algo": "APPO",
124
+ "env": "mujoco_ant",
125
+ "experiment": "ant_test"
126
+ },
127
+ "git_hash": "162ce7329569a2a3abaa26ecb8162a74f833b63e",
128
+ "git_repo_name": "https://github.com/andrewzhang505/sample-factory.git",
129
+ "train_script": "sf_examples.mujoco.train_mujoco"
130
+ }