--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: deberta-v3-base-finetuned-autext23_s2 results: [] --- # deberta-v3-base-finetuned-autext23_s2 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0620 - Accuracy: 0.5731 - F1: 0.5648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 246 | 0.9935 | 0.5587 | 0.5371 | | 1.1328 | 2.0 | 492 | 0.9254 | 0.5792 | 0.5592 | | 1.1328 | 3.0 | 738 | 0.9501 | 0.5801 | 0.5692 | | 0.7267 | 4.0 | 984 | 1.0345 | 0.5619 | 0.5509 | | 0.7267 | 5.0 | 1230 | 1.0620 | 0.5731 | 0.5648 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1