angelinux commited on
Commit
665ef1d
·
1 Parent(s): e5adbc3

First example

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 269.81 +/- 34.66
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9e49ac560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9e49ac5f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9e49ac680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9e49ac710>", "_build": "<function ActorCriticPolicy._build at 0x7fe9e49ac7a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9e49ac830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9e49ac8c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9e49ac950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9e49ac9e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9e49aca70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9e49acb00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9e49f68d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652109142.612125, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB9tT2/Zqg/866nPhEtA79TF7Y94OXVOwAAAAAAAAAAMwEJvqE3sj3RCaM+0J2svpzrbj1abpo9AAAAAAAAAAAaDIu9rKfOPOsxkj4HR3C+g7XUPQZ3ajwAAAAAAAAAAIoJob72WRc/gOQbPoQqBb/doaO+eyFNPgAAAAAAAAAAwFwtvk6wyD695ew9PhQMv444tb2xgcs9AAAAAAAAAABmWTO94dDsui4jFj2GLds8NPuOOxtrur0AAIA/AACAP2bptTzXm2S7ow+POuJYVTxkoac8iQM6vQAAAAAAAAAAzU5avfie3Txl2XQ+PQZfvhpwwj0o9e49AAAAAAAAAACtGUk+KUvAPs+tAb5y0OO+CVP+PeDm/L0AAAAAAAAAALMBYT0fqCc/3C3BPB0wT7+fvzc9bm9gvQAAAAAAAAAATXlsvSloUbrVXgI2RXUJMbYRp7pqfSC1AACAPwAAgD/ty1w+l48WPOmZC78wZce+mu5rPu2md78AAAAAAACAPzPt2b0PdzG8kszJPeRLUj39T6O9rtvvOwAAgD8AAAAAM+9NPBOVuD/i4KU+NJ6cPtlLmbwII+i9AAAAAAAAAACzhTg9SPujuguUjTgAdyS1B40VusAtorcAAIA/AACAP010BD32OHm6/Jc+NNsMky3D6As7llOkswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI42vPLAmsckCUhpRSlIwBbJRL3YwBdJRHQLSrSwPiDNB1fZQoaAZoCWgPQwjAQubKoApiQJSGlFKUaBVN6ANoFkdAtKuYoG6f8XV9lChoBmgJaA9DCAkYXd7chXJAlIaUUpRoFUufaBZHQLSrm+WGATZ1fZQoaAZoCWgPQwj5E5UNq+FyQJSGlFKUaBVLoWgWR0C0q6E7W/ahdX2UKGgGaAloD0MIiKBq9OobckCUhpRSlGgVS6toFkdAtKuf+0gKW3V9lChoBmgJaA9DCBdnDHMCDnJAlIaUUpRoFUuYaBZHQLSrpLMLWqd1fZQoaAZoCWgPQwgMHqZ9c/5xQJSGlFKUaBVL22gWR0C0q78+A3DOdX2UKGgGaAloD0MIAi1dwfZQcUCUhpRSlGgVS9ZoFkdAtKu/PQfIS3V9lChoBmgJaA9DCECGjh2U4XJAlIaUUpRoFUvqaBZHQLSrwgVXV9Z1fZQoaAZoCWgPQwgh5SfVvpdzQJSGlFKUaBVL8WgWR0C0q876guh9dX2UKGgGaAloD0MIA9GTMikWc0CUhpRSlGgVS+loFkdAtKvU7cO9WnV9lChoBmgJaA9DCIVDb/EwdXFAlIaUUpRoFUvAaBZHQLSr4jdYW+J1fZQoaAZoCWgPQwi8H7dfPkxzQJSGlFKUaBVL9GgWR0C0q+iNS619dX2UKGgGaAloD0MIWksBaT+ncECUhpRSlGgVS65oFkdAtKvse3hGY3V9lChoBmgJaA9DCNVCyeTU6nBAlIaUUpRoFUusaBZHQLSr9dWQwK11fZQoaAZoCWgPQwgmHlA2ZblvQJSGlFKUaBVLo2gWR0C0q/uqBErodX2UKGgGaAloD0MIfsnGgy1Mc0CUhpRSlGgVS7RoFkdAtKwwEnssx3V9lChoBmgJaA9DCKPJxRjYJG9AlIaUUpRoFUuaaBZHQLSsWvysjml1fZQoaAZoCWgPQwjLnC6LifRuQJSGlFKUaBVLn2gWR0C0rHvvKEFodX2UKGgGaAloD0MIO3KkM3D9cECUhpRSlGgVS7toFkdAtKx8aHbh33V9lChoBmgJaA9DCNfbZirE7XFAlIaUUpRoFUu+aBZHQLSshWMju8d1fZQoaAZoCWgPQwiUv3tHjaZwQJSGlFKUaBVLxGgWR0C0rIVhoduHdX2UKGgGaAloD0MIprc/F00kckCUhpRSlGgVS6VoFkdAtKyGs0YTCnV9lChoBmgJaA9DCOWAXU2eZXNAlIaUUpRoFUvDaBZHQLSsifvF3px1fZQoaAZoCWgPQwhuisdF9WNxQJSGlFKUaBVLmWgWR0C0rIym/FisdX2UKGgGaAloD0MIVfmekQhKb0CUhpRSlGgVS65oFkdAtKyPdhy8z3V9lChoBmgJaA9DCHqKHCKugHJAlIaUUpRoFUuuaBZHQLSsnOrhisp1fZQoaAZoCWgPQwi5jJsa6N1vQJSGlFKUaBVLlmgWR0C0rKAMhHLBdX2UKGgGaAloD0MInE6y1WV7b0CUhpRSlGgVS6loFkdAtKyp3Ux20XV9lChoBmgJaA9DCM/4vrgULXFAlIaUUpRoFUu0aBZHQLSsurXDm8x1fZQoaAZoCWgPQwgroib6vFVxQJSGlFKUaBVLrmgWR0C0rMgjUutfdX2UKGgGaAloD0MINKDejJplSUCUhpRSlGgVS1doFkdAtKzl9gF5fXV9lChoBmgJaA9DCCHmkqot93JAlIaUUpRoFUvkaBZHQLStA99tuUF1fZQoaAZoCWgPQwh8nj9t1GluQJSGlFKUaBVLmGgWR0C0rUg2ZRbbdX2UKGgGaAloD0MIxqhr7f3pckCUhpRSlGgVS+poFkdAtK1R1X/5tXV9lChoBmgJaA9DCDm0yHa+/XJAlIaUUpRoFUvQaBZHQLStXYBeXzF1fZQoaAZoCWgPQwgIzEOmPGRzQJSGlFKUaBVLumgWR0C0rWM2aUiZdX2UKGgGaAloD0MIqOLGLWYRckCUhpRSlGgVS6FoFkdAtK15UWEbpHV9lChoBmgJaA9DCAXDuYbZgHNAlIaUUpRoFUvMaBZHQLStfPq9oOB1fZQoaAZoCWgPQwg4EJIFzK5wQJSGlFKUaBVLwGgWR0C0rXvFNtZWdX2UKGgGaAloD0MIduJyvIIBcUCUhpRSlGgVS65oFkdAtK1/HyVfNXV9lChoBmgJaA9DCA8om3JF+nFAlIaUUpRoFUvJaBZHQLStglhPTG51fZQoaAZoCWgPQwgTtp+MMWNxQJSGlFKUaBVLx2gWR0C0rYZLAYYSdX2UKGgGaAloD0MIelImNbRNckCUhpRSlGgVS6BoFkdAtK2NSHdoFnV9lChoBmgJaA9DCDIfEOjMB3FAlIaUUpRoFUuaaBZHQLStk/Khcqx1fZQoaAZoCWgPQwhAwFq1a2tzQJSGlFKUaBVLzWgWR0C0rZ6N+9amdX2UKGgGaAloD0MIEM8SZATrc0CUhpRSlGgVS+hoFkdAtK2kbNr0rnV9lChoBmgJaA9DCDLGh9lLxW5AlIaUUpRoFUuVaBZHQLStweP7vXt1fZQoaAZoCWgPQwiOd0fGKthzQJSGlFKUaBVLw2gWR0C0rdxmkFfRdX2UKGgGaAloD0MIvr9Be3W0ckCUhpRSlGgVS6doFkdAtK4S4LCvYHV9lChoBmgJaA9DCN+l1CUj2XFAlIaUUpRoFUudaBZHQLSuGy8zyjJ1fZQoaAZoCWgPQwgejUP9bpNxQJSGlFKUaBVLmGgWR0C0rkRouf29dX2UKGgGaAloD0MIjs75KQ75b0CUhpRSlGgVS6xoFkdAtK5SVZ9uxnV9lChoBmgJaA9DCDV/TGtTdHNAlIaUUpRoFUvGaBZHQLSuWJSBK+V1fZQoaAZoCWgPQwiWJM/1PaBwQJSGlFKUaBVLuWgWR0C0rl9Bv73xdX2UKGgGaAloD0MIJCnpYSh8cECUhpRSlGgVS5xoFkdAtK5gZpBX0XV9lChoBmgJaA9DCEPnNXZJHHJAlIaUUpRoFUu4aBZHQLSuYH8CPp91fZQoaAZoCWgPQwhcy2Q43ohyQJSGlFKUaBVL32gWR0C0rmjGo73gdX2UKGgGaAloD0MII/d0dcdmcUCUhpRSlGgVS8FoFkdAtK6XcL0BfnV9lChoBmgJaA9DCLX+lgA8BHJAlIaUUpRoFUvfaBZHQLSum6d1+y91fZQoaAZoCWgPQwgnE7cKYrhxQJSGlFKUaBVLq2gWR0C0rp+z6ab4dX2UKGgGaAloD0MIhIHn3gP/c0CUhpRSlGgVS/FoFkdAtK6n8IiTuHV9lChoBmgJaA9DCLyWkA/6wXNAlIaUUpRoFUvqaBZHQLSuuceKba11fZQoaAZoCWgPQwjiAWVTrrZxQJSGlFKUaBVLkmgWR0C0rtZUT+NtdX2UKGgGaAloD0MIFop0P6fScUCUhpRSlGgVS8RoFkdAtK7fAqNIb3V9lChoBmgJaA9DCMF0WreBT3BAlIaUUpRoFUujaBZHQLSvNEMspXp1fZQoaAZoCWgPQwjvdOeJp+JyQJSGlFKUaBVNZAFoFkdAtK9KakRBeHV9lChoBmgJaA9DCKciFcZWO3JAlIaUUpRoFUvkaBZHQLSvVxBE8aJ1fZQoaAZoCWgPQwg6sBwhQxFxQJSGlFKUaBVLvWgWR0C0r2cW0qpcdX2UKGgGaAloD0MIvodLjntuckCUhpRSlGgVS9hoFkdAtK9wxIre7HV9lChoBmgJaA9DCF5nQ/6ZC3JAlIaUUpRoFUvFaBZHQLSvce8f3ex1fZQoaAZoCWgPQwgixmte1flwQJSGlFKUaBVLoGgWR0C0r3irDIikdX2UKGgGaAloD0MIvOgrSDOFckCUhpRSlGgVS8ZoFkdAtK97buc+aHV9lChoBmgJaA9DCAzJycQtbXJAlIaUUpRoFUvTaBZHQLSvfI4lyBF1fZQoaAZoCWgPQwj04VmCzBNwQJSGlFKUaBVLpmgWR0C0r4bm2b5NdX2UKGgGaAloD0MIDFpIwOjtc0CUhpRSlGgVS/BoFkdAtK+lhMJyAHV9lChoBmgJaA9DCGHGFKyxLXNAlIaUUpRoFUvOaBZHQLSvs4XXRPZ1fZQoaAZoCWgPQwiC4seY+0ByQJSGlFKUaBVL0GgWR0C0r8ERFqi5dX2UKGgGaAloD0MIN/5EZcMgUECUhpRSlGgVS2RoFkdAtK/IfA9FF3V9lChoBmgJaA9DCPa3BOBfanJAlIaUUpRoFUu6aBZHQLSv0c7hegN1fZQoaAZoCWgPQwhdpbvrbNJwQJSGlFKUaBVLt2gWR0C0r9VzMibEdX2UKGgGaAloD0MIfAqA8cwlckCUhpRSlGgVS9toFkdAtK/d0cOsk3V9lChoBmgJaA9DCPiNrz1zenFAlIaUUpRoFUuQaBZHQLSv6UgjhUB1fZQoaAZoCWgPQwgPe6GAbZZxQJSGlFKUaBVLlGgWR0C0sBXM+u/2dX2UKGgGaAloD0MIwt1Zu+2LbkCUhpRSlGgVS5ZoFkdAtLAj7DVH4HV9lChoBmgJaA9DCK1sH/JWaXJAlIaUUpRoFUudaBZHQLSwK+N96Tp1fZQoaAZoCWgPQwhNSGsMOiJyQJSGlFKUaBVLzmgWR0C0sFFNxlxwdX2UKGgGaAloD0MI1nJnJphIckCUhpRSlGgVS8VoFkdAtLBmbgCOm3V9lChoBmgJaA9DCBLYnIOnkXFAlIaUUpRoFUu8aBZHQLSwakJa7mN1fZQoaAZoCWgPQwi0BBkBVRJzQJSGlFKUaBVLyGgWR0C0sG0hA4XGdX2UKGgGaAloD0MIPiZSmk2NckCUhpRSlGgVS8doFkdAtLBtLSNOunV9lChoBmgJaA9DCIS4cvZOOnJAlIaUUpRoFUuXaBZHQLSwd27nPmh1fZQoaAZoCWgPQwhb7WEvlKdwQJSGlFKUaBVLtGgWR0C0sH79hqj8dX2UKGgGaAloD0MIKGVSQxu0cUCUhpRSlGgVS7xoFkdAtLC22qkuYnV9lChoBmgJaA9DCF7yP/l7hHBAlIaUUpRoFUuwaBZHQLSwtcfvF3p1fZQoaAZoCWgPQwh6UbtfhZJxQJSGlFKUaBVLv2gWR0C0sL9xdY4idX2UKGgGaAloD0MIrb1PVWFac0CUhpRSlGgVS85oFkdAtLDEqUeMh3V9lChoBmgJaA9DCPfoDfeRt3JAlIaUUpRoFUvgaBZHQLSwxh8pkPN1fZQoaAZoCWgPQwhxy0dS0k5zQJSGlFKUaBVL4WgWR0C0sQE5lvqDdX2UKGgGaAloD0MIsMivH6IxcECUhpRSlGgVS8ZoFkdAtLEgDRtxdnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-test.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e92766485a8144feea174cf38de65f43f340a27ee57272edcf425de2afbccfe
3
+ size 143983
ppo-LunarLander-test/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-test/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9e49ac560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9e49ac5f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9e49ac680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9e49ac710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe9e49ac7a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe9e49ac830>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9e49ac8c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe9e49ac950>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9e49ac9e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9e49aca70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9e49acb00>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe9e49f68d0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652109142.612125,
51
+ "learning_rate": 0.001,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAB9tT2/Zqg/866nPhEtA79TF7Y94OXVOwAAAAAAAAAAMwEJvqE3sj3RCaM+0J2svpzrbj1abpo9AAAAAAAAAAAaDIu9rKfOPOsxkj4HR3C+g7XUPQZ3ajwAAAAAAAAAAIoJob72WRc/gOQbPoQqBb/doaO+eyFNPgAAAAAAAAAAwFwtvk6wyD695ew9PhQMv444tb2xgcs9AAAAAAAAAABmWTO94dDsui4jFj2GLds8NPuOOxtrur0AAIA/AACAP2bptTzXm2S7ow+POuJYVTxkoac8iQM6vQAAAAAAAAAAzU5avfie3Txl2XQ+PQZfvhpwwj0o9e49AAAAAAAAAACtGUk+KUvAPs+tAb5y0OO+CVP+PeDm/L0AAAAAAAAAALMBYT0fqCc/3C3BPB0wT7+fvzc9bm9gvQAAAAAAAAAATXlsvSloUbrVXgI2RXUJMbYRp7pqfSC1AACAPwAAgD/ty1w+l48WPOmZC78wZce+mu5rPu2md78AAAAAAACAPzPt2b0PdzG8kszJPeRLUj39T6O9rtvvOwAAgD8AAAAAM+9NPBOVuD/i4KU+NJ6cPtlLmbwII+i9AAAAAAAAAACzhTg9SPujuguUjTgAdyS1B40VusAtorcAAIA/AACAP010BD32OHm6/Jc+NNsMky3D6As7llOkswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI42vPLAmsckCUhpRSlIwBbJRL3YwBdJRHQLSrSwPiDNB1fZQoaAZoCWgPQwjAQubKoApiQJSGlFKUaBVN6ANoFkdAtKuYoG6f8XV9lChoBmgJaA9DCAkYXd7chXJAlIaUUpRoFUufaBZHQLSrm+WGATZ1fZQoaAZoCWgPQwj5E5UNq+FyQJSGlFKUaBVLoWgWR0C0q6E7W/ahdX2UKGgGaAloD0MIiKBq9OobckCUhpRSlGgVS6toFkdAtKuf+0gKW3V9lChoBmgJaA9DCBdnDHMCDnJAlIaUUpRoFUuYaBZHQLSrpLMLWqd1fZQoaAZoCWgPQwgMHqZ9c/5xQJSGlFKUaBVL22gWR0C0q78+A3DOdX2UKGgGaAloD0MIAi1dwfZQcUCUhpRSlGgVS9ZoFkdAtKu/PQfIS3V9lChoBmgJaA9DCECGjh2U4XJAlIaUUpRoFUvqaBZHQLSrwgVXV9Z1fZQoaAZoCWgPQwgh5SfVvpdzQJSGlFKUaBVL8WgWR0C0q876guh9dX2UKGgGaAloD0MIA9GTMikWc0CUhpRSlGgVS+loFkdAtKvU7cO9WnV9lChoBmgJaA9DCIVDb/EwdXFAlIaUUpRoFUvAaBZHQLSr4jdYW+J1fZQoaAZoCWgPQwi8H7dfPkxzQJSGlFKUaBVL9GgWR0C0q+iNS619dX2UKGgGaAloD0MIWksBaT+ncECUhpRSlGgVS65oFkdAtKvse3hGY3V9lChoBmgJaA9DCNVCyeTU6nBAlIaUUpRoFUusaBZHQLSr9dWQwK11fZQoaAZoCWgPQwgmHlA2ZblvQJSGlFKUaBVLo2gWR0C0q/uqBErodX2UKGgGaAloD0MIfsnGgy1Mc0CUhpRSlGgVS7RoFkdAtKwwEnssx3V9lChoBmgJaA9DCKPJxRjYJG9AlIaUUpRoFUuaaBZHQLSsWvysjml1fZQoaAZoCWgPQwjLnC6LifRuQJSGlFKUaBVLn2gWR0C0rHvvKEFodX2UKGgGaAloD0MIO3KkM3D9cECUhpRSlGgVS7toFkdAtKx8aHbh33V9lChoBmgJaA9DCNfbZirE7XFAlIaUUpRoFUu+aBZHQLSshWMju8d1fZQoaAZoCWgPQwiUv3tHjaZwQJSGlFKUaBVLxGgWR0C0rIVhoduHdX2UKGgGaAloD0MIprc/F00kckCUhpRSlGgVS6VoFkdAtKyGs0YTCnV9lChoBmgJaA9DCOWAXU2eZXNAlIaUUpRoFUvDaBZHQLSsifvF3px1fZQoaAZoCWgPQwhuisdF9WNxQJSGlFKUaBVLmWgWR0C0rIym/FisdX2UKGgGaAloD0MIVfmekQhKb0CUhpRSlGgVS65oFkdAtKyPdhy8z3V9lChoBmgJaA9DCHqKHCKugHJAlIaUUpRoFUuuaBZHQLSsnOrhisp1fZQoaAZoCWgPQwi5jJsa6N1vQJSGlFKUaBVLlmgWR0C0rKAMhHLBdX2UKGgGaAloD0MInE6y1WV7b0CUhpRSlGgVS6loFkdAtKyp3Ux20XV9lChoBmgJaA9DCM/4vrgULXFAlIaUUpRoFUu0aBZHQLSsurXDm8x1fZQoaAZoCWgPQwgroib6vFVxQJSGlFKUaBVLrmgWR0C0rMgjUutfdX2UKGgGaAloD0MINKDejJplSUCUhpRSlGgVS1doFkdAtKzl9gF5fXV9lChoBmgJaA9DCCHmkqot93JAlIaUUpRoFUvkaBZHQLStA99tuUF1fZQoaAZoCWgPQwh8nj9t1GluQJSGlFKUaBVLmGgWR0C0rUg2ZRbbdX2UKGgGaAloD0MIxqhr7f3pckCUhpRSlGgVS+poFkdAtK1R1X/5tXV9lChoBmgJaA9DCDm0yHa+/XJAlIaUUpRoFUvQaBZHQLStXYBeXzF1fZQoaAZoCWgPQwgIzEOmPGRzQJSGlFKUaBVLumgWR0C0rWM2aUiZdX2UKGgGaAloD0MIqOLGLWYRckCUhpRSlGgVS6FoFkdAtK15UWEbpHV9lChoBmgJaA9DCAXDuYbZgHNAlIaUUpRoFUvMaBZHQLStfPq9oOB1fZQoaAZoCWgPQwg4EJIFzK5wQJSGlFKUaBVLwGgWR0C0rXvFNtZWdX2UKGgGaAloD0MIduJyvIIBcUCUhpRSlGgVS65oFkdAtK1/HyVfNXV9lChoBmgJaA9DCA8om3JF+nFAlIaUUpRoFUvJaBZHQLStglhPTG51fZQoaAZoCWgPQwgTtp+MMWNxQJSGlFKUaBVLx2gWR0C0rYZLAYYSdX2UKGgGaAloD0MIelImNbRNckCUhpRSlGgVS6BoFkdAtK2NSHdoFnV9lChoBmgJaA9DCDIfEOjMB3FAlIaUUpRoFUuaaBZHQLStk/Khcqx1fZQoaAZoCWgPQwhAwFq1a2tzQJSGlFKUaBVLzWgWR0C0rZ6N+9amdX2UKGgGaAloD0MIEM8SZATrc0CUhpRSlGgVS+hoFkdAtK2kbNr0rnV9lChoBmgJaA9DCDLGh9lLxW5AlIaUUpRoFUuVaBZHQLStweP7vXt1fZQoaAZoCWgPQwiOd0fGKthzQJSGlFKUaBVLw2gWR0C0rdxmkFfRdX2UKGgGaAloD0MIvr9Be3W0ckCUhpRSlGgVS6doFkdAtK4S4LCvYHV9lChoBmgJaA9DCN+l1CUj2XFAlIaUUpRoFUudaBZHQLSuGy8zyjJ1fZQoaAZoCWgPQwgejUP9bpNxQJSGlFKUaBVLmGgWR0C0rkRouf29dX2UKGgGaAloD0MIjs75KQ75b0CUhpRSlGgVS6xoFkdAtK5SVZ9uxnV9lChoBmgJaA9DCDV/TGtTdHNAlIaUUpRoFUvGaBZHQLSuWJSBK+V1fZQoaAZoCWgPQwiWJM/1PaBwQJSGlFKUaBVLuWgWR0C0rl9Bv73xdX2UKGgGaAloD0MIJCnpYSh8cECUhpRSlGgVS5xoFkdAtK5gZpBX0XV9lChoBmgJaA9DCEPnNXZJHHJAlIaUUpRoFUu4aBZHQLSuYH8CPp91fZQoaAZoCWgPQwhcy2Q43ohyQJSGlFKUaBVL32gWR0C0rmjGo73gdX2UKGgGaAloD0MII/d0dcdmcUCUhpRSlGgVS8FoFkdAtK6XcL0BfnV9lChoBmgJaA9DCLX+lgA8BHJAlIaUUpRoFUvfaBZHQLSum6d1+y91fZQoaAZoCWgPQwgnE7cKYrhxQJSGlFKUaBVLq2gWR0C0rp+z6ab4dX2UKGgGaAloD0MIhIHn3gP/c0CUhpRSlGgVS/FoFkdAtK6n8IiTuHV9lChoBmgJaA9DCLyWkA/6wXNAlIaUUpRoFUvqaBZHQLSuuceKba11fZQoaAZoCWgPQwjiAWVTrrZxQJSGlFKUaBVLkmgWR0C0rtZUT+NtdX2UKGgGaAloD0MIFop0P6fScUCUhpRSlGgVS8RoFkdAtK7fAqNIb3V9lChoBmgJaA9DCMF0WreBT3BAlIaUUpRoFUujaBZHQLSvNEMspXp1fZQoaAZoCWgPQwjvdOeJp+JyQJSGlFKUaBVNZAFoFkdAtK9KakRBeHV9lChoBmgJaA9DCKciFcZWO3JAlIaUUpRoFUvkaBZHQLSvVxBE8aJ1fZQoaAZoCWgPQwg6sBwhQxFxQJSGlFKUaBVLvWgWR0C0r2cW0qpcdX2UKGgGaAloD0MIvodLjntuckCUhpRSlGgVS9hoFkdAtK9wxIre7HV9lChoBmgJaA9DCF5nQ/6ZC3JAlIaUUpRoFUvFaBZHQLSvce8f3ex1fZQoaAZoCWgPQwgixmte1flwQJSGlFKUaBVLoGgWR0C0r3irDIikdX2UKGgGaAloD0MIvOgrSDOFckCUhpRSlGgVS8ZoFkdAtK97buc+aHV9lChoBmgJaA9DCAzJycQtbXJAlIaUUpRoFUvTaBZHQLSvfI4lyBF1fZQoaAZoCWgPQwj04VmCzBNwQJSGlFKUaBVLpmgWR0C0r4bm2b5NdX2UKGgGaAloD0MIDFpIwOjtc0CUhpRSlGgVS/BoFkdAtK+lhMJyAHV9lChoBmgJaA9DCGHGFKyxLXNAlIaUUpRoFUvOaBZHQLSvs4XXRPZ1fZQoaAZoCWgPQwiC4seY+0ByQJSGlFKUaBVL0GgWR0C0r8ERFqi5dX2UKGgGaAloD0MIN/5EZcMgUECUhpRSlGgVS2RoFkdAtK/IfA9FF3V9lChoBmgJaA9DCPa3BOBfanJAlIaUUpRoFUu6aBZHQLSv0c7hegN1fZQoaAZoCWgPQwhdpbvrbNJwQJSGlFKUaBVLt2gWR0C0r9VzMibEdX2UKGgGaAloD0MIfAqA8cwlckCUhpRSlGgVS9toFkdAtK/d0cOsk3V9lChoBmgJaA9DCPiNrz1zenFAlIaUUpRoFUuQaBZHQLSv6UgjhUB1fZQoaAZoCWgPQwgPe6GAbZZxQJSGlFKUaBVLlGgWR0C0sBXM+u/2dX2UKGgGaAloD0MIwt1Zu+2LbkCUhpRSlGgVS5ZoFkdAtLAj7DVH4HV9lChoBmgJaA9DCK1sH/JWaXJAlIaUUpRoFUudaBZHQLSwK+N96Tp1fZQoaAZoCWgPQwhNSGsMOiJyQJSGlFKUaBVLzmgWR0C0sFFNxlxwdX2UKGgGaAloD0MI1nJnJphIckCUhpRSlGgVS8VoFkdAtLBmbgCOm3V9lChoBmgJaA9DCBLYnIOnkXFAlIaUUpRoFUu8aBZHQLSwakJa7mN1fZQoaAZoCWgPQwi0BBkBVRJzQJSGlFKUaBVLyGgWR0C0sG0hA4XGdX2UKGgGaAloD0MIPiZSmk2NckCUhpRSlGgVS8doFkdAtLBtLSNOunV9lChoBmgJaA9DCIS4cvZOOnJAlIaUUpRoFUuXaBZHQLSwd27nPmh1fZQoaAZoCWgPQwhb7WEvlKdwQJSGlFKUaBVLtGgWR0C0sH79hqj8dX2UKGgGaAloD0MIKGVSQxu0cUCUhpRSlGgVS7xoFkdAtLC22qkuYnV9lChoBmgJaA9DCF7yP/l7hHBAlIaUUpRoFUuwaBZHQLSwtcfvF3p1fZQoaAZoCWgPQwh6UbtfhZJxQJSGlFKUaBVLv2gWR0C0sL9xdY4idX2UKGgGaAloD0MIrb1PVWFac0CUhpRSlGgVS85oFkdAtLDEqUeMh3V9lChoBmgJaA9DCPfoDfeRt3JAlIaUUpRoFUvgaBZHQLSwxh8pkPN1fZQoaAZoCWgPQwhxy0dS0k5zQJSGlFKUaBVL4WgWR0C0sQE5lvqDdX2UKGgGaAloD0MIsMivH6IxcECUhpRSlGgVS8ZoFkdAtLEgDRtxdnVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 310,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-test/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22116bdc6e2ba2d1e987f5b78f7984981ee5549b11a3404dfc8dd7a6e0e9c86c
3
+ size 84893
ppo-LunarLander-test/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:339fbc07f8f7378d2ef9d02b85286a14df3d7fa73f91b209ff438d4a22528b7b
3
+ size 43201
ppo-LunarLander-test/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-test/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee09db71c456bcdb1ca4ac1c52a08bbfac71c280c39680629b19b3e22e828f54
3
+ size 192919
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 269.81035202098275, "std_reward": 34.65564714458179, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T15:34:47.358029"}