File size: 17,186 Bytes
06e58fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
# Copyright 2024 Kandinsky 3.0 Model Team, AniMemory Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from types import SimpleNamespace
import torch
import torch.nn as nn
from packaging import version
from safetensors.torch import load_file
from diffusers.utils.accelerate_utils import apply_forward_hook
def nonlinearity(x):
return x * torch.sigmoid(x)
class SpatialNorm(nn.Module):
def __init__(
self,
f_channels,
zq_channels=None,
norm_layer=nn.GroupNorm,
freeze_norm_layer=False,
add_conv=False,
**norm_layer_params,
):
super().__init__()
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params)
if zq_channels is not None:
if freeze_norm_layer:
for p in self.norm_layer.parameters:
p.requires_grad = False
self.add_conv = add_conv
if self.add_conv:
self.conv = nn.Conv2d(
zq_channels, zq_channels, kernel_size=3, stride=1, padding=1
)
self.conv_y = nn.Conv2d(
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
)
self.conv_b = nn.Conv2d(
zq_channels, f_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, f, zq=None):
norm_f = self.norm_layer(f)
if zq is not None:
f_size = f.shape[-2:]
if (
version.parse(torch.__version__) < version.parse("2.1")
and zq.dtype == torch.bfloat16
):
zq = zq.to(dtype=torch.float32)
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
zq = zq.to(dtype=torch.bfloat16)
else:
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
if self.add_conv:
zq = self.conv(zq)
norm_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
return norm_f
def Normalize(in_channels, zq_ch=None, add_conv=None):
return SpatialNorm(
in_channels,
zq_ch,
norm_layer=nn.GroupNorm,
freeze_norm_layer=False,
add_conv=add_conv,
num_groups=32,
eps=1e-6,
affine=True,
)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def forward(self, x):
if (
version.parse(torch.__version__) < version.parse("2.1")
and x.dtype == torch.bfloat16
):
x = x.to(dtype=torch.float32)
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
x = x.to(dtype=torch.bfloat16)
else:
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
return x
class Downsample(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def forward(self, x):
if self.with_conv:
pad = (0, 1, 0, 1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout,
temb_channels=512,
zq_ch=None,
add_conv=False,
):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv)
self.conv1 = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
else:
self.nin_shortcut = torch.nn.Conv2d(
in_channels, out_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x, temb, zq=None):
h = x
h = self.norm1(h, zq)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
h = self.norm2(h, zq)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels, zq_ch=None, add_conv=False):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x, zq=None):
h_ = x
h_ = self.norm(h_, zq)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1)
k = k.reshape(b, c, h * w)
w_ = torch.bmm(q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w)
w_ = w_.permute(0, 2, 1)
h_ = torch.bmm(v, w_)
h_ = h_.reshape(b, c, h, w)
h_ = self.proj_out(h_)
return x + h_
class Encoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
double_z=True,
**ignore_kwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = torch.nn.Conv2d(
in_channels, self.ch, kernel_size=3, stride=1, padding=1
)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1,
)
def forward(self, x):
temb = None
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
give_pre_end=False,
zq_ch=None,
add_conv=False,
**ignorekwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
zq_ch=zq_ch,
add_conv=add_conv,
)
self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
zq_ch=zq_ch,
add_conv=add_conv,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
zq_ch=zq_ch,
add_conv=add_conv,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv)
curr_res = curr_res * 2
self.up.insert(0, up)
# end
self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv)
self.conv_out = torch.nn.Conv2d(
block_in, out_ch, kernel_size=3, stride=1, padding=1
)
def forward(self, z, zq):
self.last_z_shape = z.shape
temb = None
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb, zq)
h = self.mid.attn_1(h, zq)
h = self.mid.block_2(h, temb, zq)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level].block[i_block](h, temb, zq)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, zq)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h, zq)
h = nonlinearity(h)
h = self.conv_out(h)
return h
# Modified from MoVQ in https://github.com/ai-forever/Kandinsky-3/blob/main/kandinsky3/movq.py
class MoVQ(nn.Module):
def __init__(self, generator_params: dict):
super().__init__()
z_channels = generator_params["z_channels"]
self.config = SimpleNamespace(**generator_params)
self.encoder = Encoder(**generator_params)
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
self.post_quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
self.decoder = Decoder(zq_ch=z_channels, **generator_params)
self.dtype = None
self.device = None
@staticmethod
def get_model_config(pretrained_model_name_or_path, subfolder):
config_path = os.path.join(
pretrained_model_name_or_path, subfolder, "config.json"
)
assert os.path.exists(config_path), "config file not exists."
with open(config_path, "r") as f:
config = json.loads(f.read())
return config
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path,
subfolder="",
torch_dtype=torch.float32,
):
config = cls.get_model_config(pretrained_model_name_or_path, subfolder)
model = cls(generator_params=config)
ckpt_path = os.path.join(
pretrained_model_name_or_path, subfolder, "movq_model.safetensors"
)
assert os.path.exists(
ckpt_path
), f"ckpt path not exists, please check {ckpt_path}"
assert torch_dtype != torch.float16, "torch_dtype doesn't support fp16"
ckpt_weight = load_file(ckpt_path)
model.load_state_dict(ckpt_weight, strict=True)
model.to(dtype=torch_dtype)
return model
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
super(MoVQ, self).to(*args, **kwargs)
self.dtype = dtype if dtype is not None else self.dtype
self.device = device if device is not None else self.device
return self
@torch.no_grad()
@apply_forward_hook
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
@torch.no_grad()
@apply_forward_hook
def decode(self, quant):
decoder_input = self.post_quant_conv(quant)
decoded = self.decoder(decoder_input, quant)
return decoded
|