|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.utils import logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_euler_ancestral_discrete import ( |
|
EulerAncestralDiscreteScheduler, |
|
EulerAncestralDiscreteSchedulerOutput, |
|
rescale_zero_terminal_snr, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class EulerAncestralDiscreteXPredScheduler(EulerAncestralDiscreteScheduler): |
|
""" |
|
Ancestral sampling with Euler method steps. This model inherits from [`EulerAncestralDiscreteScheduler`]. Check the |
|
superclass documentation for the args and returns. |
|
|
|
For more details, see the original paper: https://arxiv.org/abs/2403.08381 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
prediction_type: str = "epsilon", |
|
timestep_spacing: str = "linspace", |
|
steps_offset: int = 0, |
|
): |
|
super(EulerAncestralDiscreteXPredScheduler, self).__init__( |
|
num_train_timesteps, |
|
beta_start, |
|
beta_end, |
|
beta_schedule, |
|
trained_betas, |
|
prediction_type, |
|
timestep_spacing, |
|
steps_offset, |
|
) |
|
|
|
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5, dtype=np.float32) |
|
self.sigmas = torch.from_numpy(sigmas) |
|
|
|
def rescale_betas_zero_snr(self): |
|
self.betas = rescale_zero_terminal_snr(self.betas) |
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5) |
|
self.sigmas = torch.from_numpy(sigmas) |
|
|
|
@property |
|
def init_noise_sigma(self): |
|
return 1.0 |
|
|
|
def scale_model_input( |
|
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] |
|
) -> torch.FloatTensor: |
|
self.is_scale_input_called = True |
|
|
|
return sample |
|
|
|
def set_timesteps( |
|
self, num_inference_steps: int, device: Union[str, torch.device] = None |
|
): |
|
""" |
|
Sets the timesteps used for the diffusion chain. Supporting function to be run before inference. |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
the number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, optional): |
|
the device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = np.linspace( |
|
0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float |
|
)[::-1].copy() |
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
timesteps = ( |
|
(np.arange(0, num_inference_steps) * step_ratio) |
|
.round()[::-1] |
|
.copy() |
|
.astype(float) |
|
) |
|
timesteps += self.config.steps_offset |
|
elif self.config.timestep_spacing == "trailing": |
|
step_ratio = self.config.num_train_timesteps / self.num_inference_steps |
|
|
|
|
|
timesteps = ( |
|
(np.arange(self.config.num_train_timesteps, 0, -step_ratio)) |
|
.round() |
|
.copy() |
|
.astype(float) |
|
) |
|
timesteps -= 1 |
|
else: |
|
raise ValueError( |
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." |
|
) |
|
|
|
sigmas = np.array((1 - self.alphas_cumprod) ** 0.5) |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) |
|
|
|
self.sigmas = torch.from_numpy(sigmas).to(device=device) |
|
if str(device).startswith("mps"): |
|
|
|
self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32) |
|
else: |
|
self.timesteps = torch.from_numpy(timesteps).to(device=device) |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
|
timestep (`float`): current timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
current instance of sample being created by diffusion process. |
|
generator (`torch.Generator`, optional): Random number generator. |
|
return_dict (`bool`): option for returning tuple rather than EulerAncestralDiscreteSchedulerOutput class |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: |
|
[`~schedulers.scheduling_utils.EulerAncestralDiscreteSchedulerOutput`] if `return_dict` is True, otherwise |
|
a `tuple`. When returning a tuple, the first element is the sample tensor. |
|
|
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
|
|
step_index = (self.timesteps == timestep).nonzero().item() |
|
|
|
if self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
sigma_t = self.sigmas[step_index] |
|
sigma_s = self.sigmas[step_index + 1] |
|
alpha_t = (1 - sigma_t**2) ** 0.5 |
|
alpha_s = (1 - sigma_s**2) ** 0.5 |
|
|
|
coef_sample = (sigma_s / sigma_t) ** 2 * alpha_t / alpha_s |
|
coef_noise = (sigma_s / sigma_t) * (1 - (alpha_t / alpha_s) ** 2) ** 0.5 |
|
coef_x = alpha_s * (1 - alpha_t**2 / alpha_s**2) / sigma_t**2 |
|
|
|
device = model_output.device |
|
noise = randn_tensor( |
|
model_output.shape, |
|
dtype=model_output.dtype, |
|
device=device, |
|
generator=generator, |
|
) |
|
prev_sample = ( |
|
coef_sample * sample + coef_x * pred_original_sample + coef_noise * noise |
|
) |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EulerAncestralDiscreteSchedulerOutput( |
|
prev_sample=prev_sample, pred_original_sample=pred_original_sample |
|
) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
sigmas = self.sigmas.to( |
|
device=original_samples.device, dtype=original_samples.dtype |
|
) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to( |
|
original_samples.device, dtype=torch.float32 |
|
) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|