Trained PPO LunarLander-v2 on more epochs
Browse files- LunarLander-v2-e10.zip +3 -0
- LunarLander-v2-e10/_stable_baselines3_version +1 -0
- LunarLander-v2-e10/data +94 -0
- LunarLander-v2-e10/policy.optimizer.pth +3 -0
- LunarLander-v2-e10/policy.pth +3 -0
- LunarLander-v2-e10/pytorch_variables.pth +3 -0
- LunarLander-v2-e10/system_info.txt +7 -0
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
LunarLander-v2-e10.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83bb703b177f4d9ec6f6960091b35c17fba2cf55fe671ce44e7b2d700a9aa78b
|
3 |
+
size 144123
|
LunarLander-v2-e10/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
LunarLander-v2-e10/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d3b07a0e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d3b07a170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d3b07a200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d3b07a290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7d3b07a320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7d3b07a3b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d3b07a440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7d3b07a4d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d3b07a560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d3b07a5f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d3b07a680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7d3b0c9630>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652266943.892799,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": "runs/1a4wkorb",
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZo0j1mi6I/wpYVP9NV2b74SSU9OuNiPgAAAAAAAAAAgP9CvfbUeboj4Ti6sNG2NXotQzu7E1c5AACAPwAAgD9G8n8+3gOHP91r+r3XiJC+eOZ7PaAh0L0AAAAAAAAAAM2rlD2usZi6ecyPOQ8UIjYm4rI5HsqmuAAAgD8AAIA/E34DvgrZgz8eMXC+vHi/vsDHL74TSl+9AAAAAAAAAACzWWG94byOukgWG7s0eZu2zh/QuuokNDoAAIA/AACAPwAJ9LxVPoI/djODPCc0n74BX068LY/0PAAAAAAAAAAAswQuvSm8V7pIDRc7draDNo/VeTt1Fno1AACAPwAAgD/NZ3Y92f5mPxYk0r2nbZ2+U0KOPRwHsr0AAAAAAAAAAEDoWL5VkDg/RdkEPfIrjr7+4Ye9JYRVPAAAAAAAAAAAzXdWPY/WFbrqAke7xoCZNg5uqTtLeQ62AACAPwAAgD8NJ4+910AoPhZOxT1x9hW+aKIbPLPeTj0AAAAAAAAAAGYAZD157yQ/owa5PSRkmb6inrA8c9/UPAAAAAAAAAAAJho7PupJZD/lelI9bbmHvmrycT2aWCW8AAAAAAAAAACakyU9KWAOujgH5brLGfu1gV2jOnMwCDoAAIA/AACAPwDxMj3S8aE/pobsPVEVg74ex6I9yi6avAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImRHeHgRSYECUhpRSlIwBbJRN6AOMAXSUR0C9Uo4VVPvbdX2UKGgGaAloD0MIv4I0Y9E4VECUhpRSlGgVTegDaBZHQL1S3cfNiYt1fZQoaAZoCWgPQwj2tS41QkRZQJSGlFKUaBVN6ANoFkdAvVNI5CF9KHV9lChoBmgJaA9DCGkc6ndhLmFAlIaUUpRoFU3oA2gWR0C9VKBkI5YHdX2UKGgGaAloD0MIAd2XM9vYXkCUhpRSlGgVTegDaBZHQL1Up38GcF11fZQoaAZoCWgPQwjrjO+LS6JeQJSGlFKUaBVN6ANoFkdAvVa2wRoRI3V9lChoBmgJaA9DCMCUgQPalWBAlIaUUpRoFU3oA2gWR0C9WEr30wrUdX2UKGgGaAloD0MIa+9TVWhsYECUhpRSlGgVTegDaBZHQL1bQvB7/n51fZQoaAZoCWgPQwiVLCeh9LZZQJSGlFKUaBVN6ANoFkdAvWJ/aBZpz3V9lChoBmgJaA9DCDZ4X5ULPWNAlIaUUpRoFU3oA2gWR0C9Y6LtzCDVdX2UKGgGaAloD0MIYFYo0n21YkCUhpRSlGgVTegDaBZHQL1mPLRa5gB1fZQoaAZoCWgPQwhBf6FHjHBVQJSGlFKUaBVN6ANoFkdAvXuN40Mw13V9lChoBmgJaA9DCA/SU+QQY2JAlIaUUpRoFU3oA2gWR0C9e/J5mh/RdX2UKGgGaAloD0MIRrQdU/dzY0CUhpRSlGgVTegDaBZHQL17+YqXnhd1fZQoaAZoCWgPQwhGCmXh6xlIQJSGlFKUaBVN6ANoFkdAvXwUaKk2xnV9lChoBmgJaA9DCNIZGHnZtWNAlIaUUpRoFU3oA2gWR0C9fB4BNmDldX2UKGgGaAloD0MI9kGWBRNtWkCUhpRSlGgVTegDaBZHQL18lr+Haex1fZQoaAZoCWgPQwhXtDnObfNbQJSGlFKUaBVN6ANoFkdAvXzgIX0oSnV9lChoBmgJaA9DCICbxYuF819AlIaUUpRoFU3oA2gWR0C9fUnFHavidX2UKGgGaAloD0MIz0vFxrxGX0CUhpRSlGgVTegDaBZHQL1+jG21D0F1fZQoaAZoCWgPQwgL0/caggdFQJSGlFKUaBVN6ANoFkdAvX6TqlgtvnV9lChoBmgJaA9DCPPK9baZ7WBAlIaUUpRoFU3oA2gWR0C9gHo9LYf5dX2UKGgGaAloD0MIYASNmUQZVkCUhpRSlGgVTegDaBZHQL2B5O801qF1fZQoaAZoCWgPQwhuisdFNaJkQJSGlFKUaBVN6ANoFkdAvYRyMVDa5HV9lChoBmgJaA9DCJsDBHP0JF9AlIaUUpRoFU3oA2gWR0C9irN69kBkdX2UKGgGaAloD0MI6BIOvUXCYUCUhpRSlGgVTegDaBZHQL2LvNipeeF1fZQoaAZoCWgPQwieQNgpVmNkQJSGlFKUaBVN6ANoFkdAvY4fpzLfUHV9lChoBmgJaA9DCFPNrKUAfGFAlIaUUpRoFU3oA2gWR0C9j/Pfj0cwdX2UKGgGaAloD0MIC0YldQIlZECUhpRSlGgVTegDaBZHQL2juWKdhAp1fZQoaAZoCWgPQwgiq1s9pwFiQJSGlFKUaBVN6ANoFkdAvaPAdRzij3V9lChoBmgJaA9DCFtfJLTlIVtAlIaUUpRoFU3oA2gWR0C9o9tRiw0PdX2UKGgGaAloD0MIiH/Y0iOcYUCUhpRSlGgVTegDaBZHQL2j43Jgb6x1fZQoaAZoCWgPQwjsUE1J1rxkQJSGlFKUaBVN6ANoFkdAvaRWUiY9gXV9lChoBmgJaA9DCDrpfePrGGFAlIaUUpRoFU3oA2gWR0C9pKEJSiuddX2UKGgGaAloD0MISl0yjhGqYECUhpRSlGgVTegDaBZHQL2lCQb+98J1fZQoaAZoCWgPQwjHEtbG2G1jQJSGlFKUaBVN6ANoFkdAvaY8TwlSj3V9lChoBmgJaA9DCCjzj77JgWRAlIaUUpRoFU3oA2gWR0C9pkRArxy5dX2UKGgGaAloD0MI3eukviz+WUCUhpRSlGgVTegDaBZHQL2oQ22G7Bh1fZQoaAZoCWgPQwhpyHiUyi5iQJSGlFKUaBVN6ANoFkdAvanlpYcNpnV9lChoBmgJaA9DCKDCEaTSNGBAlIaUUpRoFU3oA2gWR0C9rPy2lVLjdX2UKGgGaAloD0MILlOT4A2OYECUhpRSlGgVTegDaBZHQL20cNSIgvF1fZQoaAZoCWgPQwhFEyhiEchbQJSGlFKUaBVN6ANoFkdAvbWq6shgV3V9lChoBmgJaA9DCFuZ8Ev9Bl9AlIaUUpRoFU3oA2gWR0C9uFHIEKVqdX2UKGgGaAloD0MI5lyKq8q0YECUhpRSlGgVTegDaBZHQL26UMJx//h1fZQoaAZoCWgPQwggfZOmwYxgQJSGlFKUaBVN6ANoFkdAvbq3NY8uBnV9lChoBmgJaA9DCE1KQbcX3WFAlIaUUpRoFU3oA2gWR0C9ur7LlmvodX2UKGgGaAloD0MIJc/1fTh7Y0CUhpRSlGgVTegDaBZHQL262cCHRCx1fZQoaAZoCWgPQwhqpnud1FNdQJSGlFKUaBVN6ANoFkdAvbrj08NhE3V9lChoBmgJaA9DCJuOAG6Wb2BAlIaUUpRoFU3oA2gWR0C9zwVNYbKidX2UKGgGaAloD0MIDkqYaXuMY0CUhpRSlGgVTegDaBZHQL3PUc0cfeV1fZQoaAZoCWgPQwjohqbs9MBWQJSGlFKUaBVN6ANoFkdAvc/GjHn2ZnV9lChoBmgJaA9DCPD7Ny9OxGJAlIaUUpRoFU3oA2gWR0C90Q/TLGJfdX2UKGgGaAloD0MIZOWXwRh0X0CUhpRSlGgVTegDaBZHQL3RGBDXvph1fZQoaAZoCWgPQwgiqBq9GmljQJSGlFKUaBVN6ANoFkdAvdMiG47Rv3V9lChoBmgJaA9DCPm+uFQla2JAlIaUUpRoFU3oA2gWR0C91LntF8XvdX2UKGgGaAloD0MIWb+ZmC6eZ0CUhpRSlGgVTegDaBZHQL3XnTyauwJ1fZQoaAZoCWgPQwjeHRmrzW9aQJSGlFKUaBVN6ANoFkdAvd5+HTI/7nV9lChoBmgJaA9DCAEUI0vmO1lAlIaUUpRoFU3oA2gWR0C936C1JDmbdX2UKGgGaAloD0MIMsaH2cuwX0CUhpRSlGgVTegDaBZHQL3iKXNTtLN1fZQoaAZoCWgPQwh5W+m12ZVfQJSGlFKUaBVN6ANoFkdAveQghLXcxnV9lChoBmgJaA9DCDV8C+tG52NAlIaUUpRoFU3oA2gWR0C95Inzg/C7dX2UKGgGaAloD0MIs0KR7ueHYkCUhpRSlGgVTegDaBZHQL3kkVDa4+d1fZQoaAZoCWgPQwgBNEqXfiJiQJSGlFKUaBVN6ANoFkdAveStzhgmZ3V9lChoBmgJaA9DCHiAJy1cvmFAlIaUUpRoFU3oA2gWR0C95LeUyHmBdX2UKGgGaAloD0MINXo1QGkxY0CUhpRSlGgVTegDaBZHQL3lPFTNt651fZQoaAZoCWgPQwimKm1xjV1jQJSGlFKUaBVN6ANoFkdAvfkEQHzH0nV9lChoBmgJaA9DCOauJeSDIGVAlIaUUpRoFU3oA2gWR0C9+XmcawUydX2UKGgGaAloD0MIbVfog+WVY0CUhpRSlGgVTegDaBZHQL36z1WKdhB1fZQoaAZoCWgPQwgfTIqPT95iQJSGlFKUaBVN6ANoFkdAvfrW7ZnL73V9lChoBmgJaA9DCGhdo+VAumJAlIaUUpRoFU3oA2gWR0C9/OcPOIIodX2UKGgGaAloD0MIIy9rYoFrZkCUhpRSlGgVTegDaBZHQL3+b0HQhOh1fZQoaAZoCWgPQwjJVwIpsX5kQJSGlFKUaBVN6ANoFkdAvgEr+S8rZ3V9lChoBmgJaA9DCIZxN4jWxlpAlIaUUpRoFU3oA2gWR0C+B6FY2bXpdX2UKGgGaAloD0MI3qzB+6r4ZUCUhpRSlGgVTegDaBZHQL4ItRIz3yt1fZQoaAZoCWgPQwi6E+y/zrFeQJSGlFKUaBVN6ANoFkdAvgsYM9bHInV9lChoBmgJaA9DCI6vPbMksmBAlIaUUpRoFU3oA2gWR0C+DPOR1X/6dX2UKGgGaAloD0MILCy4H3CAZUCUhpRSlGgVTegDaBZHQL4NTjnV5KR1fZQoaAZoCWgPQwjBqnr5HUFkQJSGlFKUaBVN6ANoFkdAvg1VCPZIx3V9lChoBmgJaA9DCF2HakqyPGBAlIaUUpRoFU3oA2gWR0C+DWzQ/oq1dX2UKGgGaAloD0MIL6aZ7vUsZ0CUhpRSlGgVTegDaBZHQL4NdYCyQgd1fZQoaAZoCWgPQwjhtrbwvJFgQJSGlFKUaBVN6ANoFkdAvg30WFev6nV9lChoBmgJaA9DCDKOkewRg19AlIaUUpRoFU3oA2gWR0C+Dj43vQWvdX2UKGgGaAloD0MIcsCuJk+ZTUCUhpRSlGgVTTABaBZHQL4OXOLiuMd1fZQoaAZoCWgPQwi5p6s7lhRjQJSGlFKUaBVN6ANoFkdAviIOJcgQpXV9lChoBmgJaA9DCAkYXd6crmVAlIaUUpRoFU3oA2gWR0C+I09ZJTVEdX2UKGgGaAloD0MIboeGxagkXECUhpRSlGgVTegDaBZHQL4jWPsiSq51fZQoaAZoCWgPQwi0lCwnod1jQJSGlFKUaBVN6ANoFkdAviVzTLGJenV9lChoBmgJaA9DCCRGzy30rGVAlIaUUpRoFU3oA2gWR0C+JyuGXXyzdX2UKGgGaAloD0MI86rOaoFLY0CUhpRSlGgVTegDaBZHQL4qQ7laKUF1fZQoaAZoCWgPQwjMJVXbTdpdQJSGlFKUaBVN6ANoFkdAvjLqe/YapHV9lChoBmgJaA9DCE6AYfnzemBAlIaUUpRoFU3oA2gWR0C+NdWSt/4JdX2UKGgGaAloD0MI6LtbWaI6YECUhpRSlGgVTegDaBZHQL44I6HCXQd1fZQoaAZoCWgPQwhflQuVf+FlQJSGlFKUaBVN6ANoFkdAvjiYk3S8anV9lChoBmgJaA9DCACsjhzpk2FAlIaUUpRoFU3oA2gWR0C+OKEHIIWydX2UKGgGaAloD0MIMZV+wlmnYECUhpRSlGgVTegDaBZHQL44wUy57PZ1fZQoaAZoCWgPQwjMfXIUIPtiQJSGlFKUaBVN6ANoFkdAvjjNLBbfQHV9lChoBmgJaA9DCNrjhXT4r2BAlIaUUpRoFU3oA2gWR0C+OVu3MINWdX2UKGgGaAloD0MIZryt9No+WkCUhpRSlGgVTegDaBZHQL45rLa24NJ1fZQoaAZoCWgPQwiMhLacS0xhQJSGlFKUaBVN6ANoFkdAvjnQQrc0tXV9lChoBmgJaA9DCPVKWYY4BGFAlIaUUpRoFU3oA2gWR0C+Oh93Sro4dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander-v2-e10/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32d6e0b101ca17453f2408bb88570decbaa39b56a3e36152dc742ed58cca4b0c
|
3 |
+
size 84893
|
LunarLander-v2-e10/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1619a5f89678084640b6df047aa20a9f523dbdfb560fa37e983324bb6dfb643
|
3 |
+
size 43201
|
LunarLander-v2-e10/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-v2-e10/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 246.06 +/- 24.81
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f97abe0f7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f97abe0f830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f97abe0f8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f97abe0f950>", "_build": "<function ActorCriticPolicy._build at 0x7f97abe0f9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f97abe0fa70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f97abe0fb00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f97abe0fb90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f97abe0fc20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97abe0fcb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f97abe0fd40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f97abe4fd50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652118215.75873, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACa1uT2kgD+5xCK1u24OqzWXxVO7EHwdtQAAgD8AAIA/M5MtvHuCqLoGKKU4Dp4vNiv0xrrboL+3AACAPwAAgD8a+se9w6Ehus7E9Lw1LOG4VnZkOmDsTDgAAIA/AACAP+b6Iz0fRf250+KWuxoBtbUR42871ACxOgAAgD8AAIA/XfWMvuzCkTxY1B28E8/SvMADGL4xahs9AAAAAAAAAAAADbC84QyQuiuvL7oA2uWzSAh5ujqsSDkAAIA/AACAP0bhJj7g97c+ogGZvGymdr4fwgg9s9oHvgAAAAAAAAAAmorEvJFEDD9loBU9S4iavl7cDD1PqDC8AAAAAAAAAABtMnw+pAFhuw0imDvW82q4NpOHvCferLoAAIA/AACAP360ob4raUw/Mqn7vrS/s77oq2G+ntiEvgAAAAAAAAAAICQlvmzkcz8DsVm+hk6+vrJuOr7cnJG9AAAAAAAAAABAGoK9j/5fuvozjTtTzKc4KT2AusY3KroAAIA/AACAP1o12j2FA6i5BWH7OYgKAbVcday6yG7/swAAgD8AAIA/hhKRvv4Huj3mFLW9wGQ6vq/sar3r84K8AAAAAAAAAABNkwm9KfBEusqrZLwnA6i2Pt+POduwFzYAAIA/AACAP3Munr24DtS5TlqXO9ebpDYOGO+6moyxugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVeBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIpu7KLhgBXECUhpRSlIwBbJRN6AOMAXSUR0CFoG8ifQKKdX2UKGgGaAloD0MIeLeyRGfpLsCUhpRSlGgVS95oFkdAhafEKu0TlHV9lChoBmgJaA9DCCJPkq6Z+l1AlIaUUpRoFU3oA2gWR0CFrS+rU9ZBdX2UKGgGaAloD0MIQ1ciUP1pRECUhpRSlGgVTegDaBZHQIXSApjMFEB1fZQoaAZoCWgPQwixh/axgmZaQJSGlFKUaBVN6ANoFkdAhdp832mHg3V9lChoBmgJaA9DCOLLRBFSaGJAlIaUUpRoFU3oA2gWR0CF7E+4b0e2dX2UKGgGaAloD0MIsP7PYT77YECUhpRSlGgVTegDaBZHQIXu4AQxveh1fZQoaAZoCWgPQwiPF9LhIS9TQJSGlFKUaBVN6ANoFkdAhfJ9xp+MInV9lChoBmgJaA9DCFiut81Uul9AlIaUUpRoFU3oA2gWR0CF+dH4GlhxdX2UKGgGaAloD0MIX9ODglItYECUhpRSlGgVTegDaBZHQIX+jYkE9uB1fZQoaAZoCWgPQwjqeMxAZYg7QJSGlFKUaBVLumgWR0CGKk5H3DekdX2UKGgGaAloD0MIPGwiMxenX0CUhpRSlGgVTegDaBZHQIYv0ophF3J1fZQoaAZoCWgPQwg6XKs9bLFkQJSGlFKUaBVN6ANoFkdAhjIiz1K5CnV9lChoBmgJaA9DCCcwndZtsDDAlIaUUpRoFU0ZAWgWR0CGOAXaakRBdX2UKGgGaAloD0MIl8RZEbVuY0CUhpRSlGgVTegDaBZHQIY9zzAeq711fZQoaAZoCWgPQwiEEJAvoW9lQJSGlFKUaBVNfANoFkdAhkc6JqIrOXV9lChoBmgJaA9DCGHEPgEU0F1AlIaUUpRoFU3oA2gWR0CGSrDk2gnMdX2UKGgGaAloD0MI8SvWcJETX0CUhpRSlGgVTegDaBZHQIZLIy9EkSp1fZQoaAZoCWgPQwg5nPnVHOAaQJSGlFKUaBVL4mgWR0CGS+azeGfxdX2UKGgGaAloD0MIDRgkfVqYXkCUhpRSlGgVTegDaBZHQIZMH0RODap1fZQoaAZoCWgPQwgMsfojDKhfQJSGlFKUaBVN6ANoFkdAhkyTvJA+p3V9lChoBmgJaA9DCPikEwmmyjHAlIaUUpRoFUvdaBZHQIZRmFHrhR91fZQoaAZoCWgPQwg4nzpWKQheQJSGlFKUaBVN6ANoFkdAhlbPP1L8JnV9lChoBmgJaA9DCCLDKt7I+EFAlIaUUpRoFUu1aBZHQIZcU94eLeh1fZQoaAZoCWgPQwgHeNLCZZZgQJSGlFKUaBVN6ANoFkdAhnUpD/lyR3V9lChoBmgJaA9DCMITev1JtFpAlIaUUpRoFU3oA2gWR0CGfEoH9m6HdX2UKGgGaAloD0MIjniym5k8bECUhpRSlGgVTQsCaBZHQIaJviYLLIR1fZQoaAZoCWgPQwgoui784JtiQJSGlFKUaBVN6ANoFkdAhpKzV2A5JnV9lChoBmgJaA9DCEI+6NmsEV1AlIaUUpRoFU3oA2gWR0CGmiM/hVENdX2UKGgGaAloD0MI3nU25J9LW0CUhpRSlGgVTegDaBZHQIafRbGFSKp1fZQoaAZoCWgPQwin6Egu/3JeQJSGlFKUaBVN6ANoFkdAhqYbNSqEOHV9lChoBmgJaA9DCMJqLGFtuVxAlIaUUpRoFU3oA2gWR0CG0xyXlbNbdX2UKGgGaAloD0MIe/oI/GExYECUhpRSlGgVTegDaBZHQIbfxlSS/0x1fZQoaAZoCWgPQwgAWB05UupiQJSGlFKUaBVN6ANoFkdAhunnMUypJnV9lChoBmgJaA9DCLPw9bUuMV1AlIaUUpRoFU3oA2gWR0CG7WzRhMJydX2UKGgGaAloD0MIfEW3XlN0YkCUhpRSlGgVTegDaBZHQIbvCf16E8J1fZQoaAZoCWgPQwghsHJokSNdQJSGlFKUaBVN6ANoFkdAhu+YQSSNfnV9lChoBmgJaA9DCFH6Qsj57WFAlIaUUpRoFU3oA2gWR0CG9h6Rhc7hdX2UKGgGaAloD0MIdeeJ52wnX0CUhpRSlGgVTegDaBZHQIb8UO7QLNR1fZQoaAZoCWgPQwiHUKVmD3phQJSGlFKUaBVN6ANoFkdAhwMChFmWdHV9lChoBmgJaA9DCBJKXwg5kGJAlIaUUpRoFU3oA2gWR0CHHlvS+g14dX2UKGgGaAloD0MIJvxSP2+FZkCUhpRSlGgVTegDaBZHQIclww9JSR91fZQoaAZoCWgPQwh9kjtsInddQJSGlFKUaBVN6ANoFkdAhzL44ZMtb3V9lChoBmgJaA9DCNAmh086+2FAlIaUUpRoFU3oA2gWR0CHO7En9ehPdX2UKGgGaAloD0MI4nK8AtG+Y0CUhpRSlGgVTegDaBZHQIdC5vLowEh1fZQoaAZoCWgPQwibVZ+rLZNiQJSGlFKUaBVN6ANoFkdAh0e1ndweeXV9lChoBmgJaA9DCCHmkqrtDmFAlIaUUpRoFU3oA2gWR0CHTegK4QSSdX2UKGgGaAloD0MIiEm4kEfeSUCUhpRSlGgVTegDaBZHQId6Tj3mFJx1fZQoaAZoCWgPQwgCoIobt8Q4wJSGlFKUaBVLzmgWR0CHem72+PBBdX2UKGgGaAloD0MIfSQlPQwbYUCUhpRSlGgVTegDaBZHQIeFqjtXxON1fZQoaAZoCWgPQwjgDz//PcJZQJSGlFKUaBVN6ANoFkdAh488m0E5hnV9lChoBmgJaA9DCEzEW+ffa1pAlIaUUpRoFU3oA2gWR0CHkqlnh86WdX2UKGgGaAloD0MIK2ub4nF4YECUhpRSlGgVTegDaBZHQIeUMgjhUBJ1fZQoaAZoCWgPQwgTRUjdzq4ewJSGlFKUaBVN6ANoFkdAh5S75M10knV9lChoBmgJaA9DCD0K16NweWJAlIaUUpRoFU3oA2gWR0CHmuZhrnDBdX2UKGgGaAloD0MILC0j9Z6ZW0CUhpRSlGgVTegDaBZHQIegbijtXxR1fZQoaAZoCWgPQwhBfcucrmdgQJSGlFKUaBVN6ANoFkdAh6Zkw35vcnV9lChoBmgJaA9DCPm9TX/2N0RAlIaUUpRoFUvsaBZHQIepFw1ivxJ1fZQoaAZoCWgPQwhkraHUXi9bQJSGlFKUaBVN6ANoFkdAh75QaaTfSHV9lChoBmgJaA9DCLtiRnh7L1FAlIaUUpRoFU3oA2gWR0CHxT/mT1TSdX2UKGgGaAloD0MI3UHsTCGYY0CUhpRSlGgVTegDaBZHQIfSH0oScsl1fZQoaAZoCWgPQwil2NE4VLhmQJSGlFKUaBVN6ANoFkdAh+JwGfPHDXV9lChoBmgJaA9DCJRQ+kJI42RAlIaUUpRoFU3oA2gWR0CH53lmvnr6dX2UKGgGaAloD0MICp5CrlRNZECUhpRSlGgVTegDaBZHQIfuCMPz4Dd1fZQoaAZoCWgPQwhuwOeHES1hQJSGlFKUaBVN6ANoFkdAh/YwcghbGHV9lChoBmgJaA9DCDl80omE7mFAlIaUUpRoFU3oA2gWR0CH9lW8yvcKdX2UKGgGaAloD0MIk6ZB0TxEY0CUhpRSlGgVTegDaBZHQIgmj3mFJxx1fZQoaAZoCWgPQwh2NXnK6qxgQJSGlFKUaBVN6ANoFkdAiDNFp48lonV9lChoBmgJaA9DCFryeFp+qVpAlIaUUpRoFU3oA2gWR0CINQNlRP43dX2UKGgGaAloD0MIMnVXdsEhXkCUhpRSlGgVTegDaBZHQIg1l0xM3611fZQoaAZoCWgPQwjmHhK+9yRlQJSGlFKUaBVN6ANoFkdAiDxXu3MINXV9lChoBmgJaA9DCL0ZNV8lk2NAlIaUUpRoFU3oA2gWR0CIQrkbxVhkdX2UKGgGaAloD0MICkyndRtxW0CUhpRSlGgVTegDaBZHQIhJwJgLJCB1fZQoaAZoCWgPQwgfDhKifARdQJSGlFKUaBVN6ANoFkdAiEy/vfCQ93V9lChoBmgJaA9DCFrUJ7nDJjxAlIaUUpRoFUuraBZHQIhe+zQeFL51fZQoaAZoCWgPQwh/EwoRcNZcQJSGlFKUaBVN6ANoFkdAiGMeFtbcGnV9lChoBmgJaA9DCJRsdTkl4lpAlIaUUpRoFU3oA2gWR0CIakSnLq2SdX2UKGgGaAloD0MIM1GE1O3cV0CUhpRSlGgVTegDaBZHQIh3D4rSVnp1fZQoaAZoCWgPQwi7ZBwj2Q1gQJSGlFKUaBVN6ANoFkdAiIeDfNzKcXV9lChoBmgJaA9DCN5zYDlCs11AlIaUUpRoFU3oA2gWR0CIjJ44ZMtcdX2UKGgGaAloD0MIuycPCzXqYECUhpRSlGgVTegDaBZHQIiTTSmZVn51fZQoaAZoCWgPQwhAvoQKDlJjQJSGlFKUaBVN6ANoFkdAiJtVFpfx+nV9lChoBmgJaA9DCPIolfCEF1xAlIaUUpRoFU3oA2gWR0CIm3pOerdWdX2UKGgGaAloD0MIY5tUNNa8WECUhpRSlGgVTegDaBZHQIjKtfu1F6R1fZQoaAZoCWgPQwhjfJi97MBnQJSGlFKUaBVN6ANoFkdAiNdFS0jTrnV9lChoBmgJaA9DCFmLTwGwiGJAlIaUUpRoFU3oA2gWR0CI2NdOZb6hdX2UKGgGaAloD0MIJ2vUQzSJYUCUhpRSlGgVTegDaBZHQIjZYPZqVQh1fZQoaAZoCWgPQwg6sBwhA61fQJSGlFKUaBVN6ANoFkdAiN9nEuQIU3V9lChoBmgJaA9DCMMtH0nJLmBAlIaUUpRoFU3oA2gWR0CI5Q0vXbuddX2UKGgGaAloD0MIgQcGED60YECUhpRSlGgVTegDaBZHQIjuNsDW9UV1fZQoaAZoCWgPQwh6whIPKK9iQJSGlFKUaBVN6ANoFkdAiQAyaNMoMXV9lChoBmgJaA9DCKGePgL/mGJAlIaUUpRoFU3oA2gWR0CJA/ICEHt4dX2UKGgGaAloD0MI6Ih8l9IWYUCUhpRSlGgVTegDaBZHQIkKmrn1WbR1fZQoaAZoCWgPQwhNZVHYxahhQJSGlFKUaBVN6ANoFkdAiRX1LBbfQHV9lChoBmgJaA9DCGRA9nr3ByNAlIaUUpRoFUvoaBZHQIkgN2TxG2F1fZQoaAZoCWgPQwiBlxk2Si9gQJSGlFKUaBVN6ANoFkdAiSSf6GgzxnV9lChoBmgJaA9DCBssnKT5u1tAlIaUUpRoFU3oA2gWR0CJKRE6T4cndX2UKGgGaAloD0MIVwirsQSTYUCUhpRSlGgVTegDaBZHQIku6+pOvdN1fZQoaAZoCWgPQwh3SDFAogliQJSGlFKUaBVN6ANoFkdAiTZwYUFjeHV9lChoBmgJaA9DCNQq+kOz5mFAlIaUUpRoFU3oA2gWR0CJNpZAY51edWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f7d3b07a0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7d3b07a170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7d3b07a200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7d3b07a290>", "_build": "<function ActorCriticPolicy._build at 0x7f7d3b07a320>", "forward": "<function ActorCriticPolicy.forward at 0x7f7d3b07a3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7d3b07a440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f7d3b07a4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7d3b07a560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7d3b07a5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7d3b07a680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7d3b0c9630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652266943.892799, "learning_rate": 0.0003, "tensorboard_log": "runs/1a4wkorb", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZo0j1mi6I/wpYVP9NV2b74SSU9OuNiPgAAAAAAAAAAgP9CvfbUeboj4Ti6sNG2NXotQzu7E1c5AACAPwAAgD9G8n8+3gOHP91r+r3XiJC+eOZ7PaAh0L0AAAAAAAAAAM2rlD2usZi6ecyPOQ8UIjYm4rI5HsqmuAAAgD8AAIA/E34DvgrZgz8eMXC+vHi/vsDHL74TSl+9AAAAAAAAAACzWWG94byOukgWG7s0eZu2zh/QuuokNDoAAIA/AACAPwAJ9LxVPoI/djODPCc0n74BX068LY/0PAAAAAAAAAAAswQuvSm8V7pIDRc7draDNo/VeTt1Fno1AACAPwAAgD/NZ3Y92f5mPxYk0r2nbZ2+U0KOPRwHsr0AAAAAAAAAAEDoWL5VkDg/RdkEPfIrjr7+4Ye9JYRVPAAAAAAAAAAAzXdWPY/WFbrqAke7xoCZNg5uqTtLeQ62AACAPwAAgD8NJ4+910AoPhZOxT1x9hW+aKIbPLPeTj0AAAAAAAAAAGYAZD157yQ/owa5PSRkmb6inrA8c9/UPAAAAAAAAAAAJho7PupJZD/lelI9bbmHvmrycT2aWCW8AAAAAAAAAACakyU9KWAOujgH5brLGfu1gV2jOnMwCDoAAIA/AACAPwDxMj3S8aE/pobsPVEVg74ex6I9yi6avAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImRHeHgRSYECUhpRSlIwBbJRN6AOMAXSUR0C9Uo4VVPvbdX2UKGgGaAloD0MIv4I0Y9E4VECUhpRSlGgVTegDaBZHQL1S3cfNiYt1fZQoaAZoCWgPQwj2tS41QkRZQJSGlFKUaBVN6ANoFkdAvVNI5CF9KHV9lChoBmgJaA9DCGkc6ndhLmFAlIaUUpRoFU3oA2gWR0C9VKBkI5YHdX2UKGgGaAloD0MIAd2XM9vYXkCUhpRSlGgVTegDaBZHQL1Up38GcF11fZQoaAZoCWgPQwjrjO+LS6JeQJSGlFKUaBVN6ANoFkdAvVa2wRoRI3V9lChoBmgJaA9DCMCUgQPalWBAlIaUUpRoFU3oA2gWR0C9WEr30wrUdX2UKGgGaAloD0MIa+9TVWhsYECUhpRSlGgVTegDaBZHQL1bQvB7/n51fZQoaAZoCWgPQwiVLCeh9LZZQJSGlFKUaBVN6ANoFkdAvWJ/aBZpz3V9lChoBmgJaA9DCDZ4X5ULPWNAlIaUUpRoFU3oA2gWR0C9Y6LtzCDVdX2UKGgGaAloD0MIYFYo0n21YkCUhpRSlGgVTegDaBZHQL1mPLRa5gB1fZQoaAZoCWgPQwhBf6FHjHBVQJSGlFKUaBVN6ANoFkdAvXuN40Mw13V9lChoBmgJaA9DCA/SU+QQY2JAlIaUUpRoFU3oA2gWR0C9e/J5mh/RdX2UKGgGaAloD0MIRrQdU/dzY0CUhpRSlGgVTegDaBZHQL17+YqXnhd1fZQoaAZoCWgPQwhGCmXh6xlIQJSGlFKUaBVN6ANoFkdAvXwUaKk2xnV9lChoBmgJaA9DCNIZGHnZtWNAlIaUUpRoFU3oA2gWR0C9fB4BNmDldX2UKGgGaAloD0MI9kGWBRNtWkCUhpRSlGgVTegDaBZHQL18lr+Haex1fZQoaAZoCWgPQwhXtDnObfNbQJSGlFKUaBVN6ANoFkdAvXzgIX0oSnV9lChoBmgJaA9DCICbxYuF819AlIaUUpRoFU3oA2gWR0C9fUnFHavidX2UKGgGaAloD0MIz0vFxrxGX0CUhpRSlGgVTegDaBZHQL1+jG21D0F1fZQoaAZoCWgPQwgL0/caggdFQJSGlFKUaBVN6ANoFkdAvX6TqlgtvnV9lChoBmgJaA9DCPPK9baZ7WBAlIaUUpRoFU3oA2gWR0C9gHo9LYf5dX2UKGgGaAloD0MIYASNmUQZVkCUhpRSlGgVTegDaBZHQL2B5O801qF1fZQoaAZoCWgPQwhuisdFNaJkQJSGlFKUaBVN6ANoFkdAvYRyMVDa5HV9lChoBmgJaA9DCJsDBHP0JF9AlIaUUpRoFU3oA2gWR0C9irN69kBkdX2UKGgGaAloD0MI6BIOvUXCYUCUhpRSlGgVTegDaBZHQL2LvNipeeF1fZQoaAZoCWgPQwieQNgpVmNkQJSGlFKUaBVN6ANoFkdAvY4fpzLfUHV9lChoBmgJaA9DCFPNrKUAfGFAlIaUUpRoFU3oA2gWR0C9j/Pfj0cwdX2UKGgGaAloD0MIC0YldQIlZECUhpRSlGgVTegDaBZHQL2juWKdhAp1fZQoaAZoCWgPQwgiq1s9pwFiQJSGlFKUaBVN6ANoFkdAvaPAdRzij3V9lChoBmgJaA9DCFtfJLTlIVtAlIaUUpRoFU3oA2gWR0C9o9tRiw0PdX2UKGgGaAloD0MIiH/Y0iOcYUCUhpRSlGgVTegDaBZHQL2j43Jgb6x1fZQoaAZoCWgPQwjsUE1J1rxkQJSGlFKUaBVN6ANoFkdAvaRWUiY9gXV9lChoBmgJaA9DCDrpfePrGGFAlIaUUpRoFU3oA2gWR0C9pKEJSiuddX2UKGgGaAloD0MISl0yjhGqYECUhpRSlGgVTegDaBZHQL2lCQb+98J1fZQoaAZoCWgPQwjHEtbG2G1jQJSGlFKUaBVN6ANoFkdAvaY8TwlSj3V9lChoBmgJaA9DCCjzj77JgWRAlIaUUpRoFU3oA2gWR0C9pkRArxy5dX2UKGgGaAloD0MI3eukviz+WUCUhpRSlGgVTegDaBZHQL2oQ22G7Bh1fZQoaAZoCWgPQwhpyHiUyi5iQJSGlFKUaBVN6ANoFkdAvanlpYcNpnV9lChoBmgJaA9DCKDCEaTSNGBAlIaUUpRoFU3oA2gWR0C9rPy2lVLjdX2UKGgGaAloD0MILlOT4A2OYECUhpRSlGgVTegDaBZHQL20cNSIgvF1fZQoaAZoCWgPQwhFEyhiEchbQJSGlFKUaBVN6ANoFkdAvbWq6shgV3V9lChoBmgJaA9DCFuZ8Ev9Bl9AlIaUUpRoFU3oA2gWR0C9uFHIEKVqdX2UKGgGaAloD0MI5lyKq8q0YECUhpRSlGgVTegDaBZHQL26UMJx//h1fZQoaAZoCWgPQwggfZOmwYxgQJSGlFKUaBVN6ANoFkdAvbq3NY8uBnV9lChoBmgJaA9DCE1KQbcX3WFAlIaUUpRoFU3oA2gWR0C9ur7LlmvodX2UKGgGaAloD0MIJc/1fTh7Y0CUhpRSlGgVTegDaBZHQL262cCHRCx1fZQoaAZoCWgPQwhqpnud1FNdQJSGlFKUaBVN6ANoFkdAvbrj08NhE3V9lChoBmgJaA9DCJuOAG6Wb2BAlIaUUpRoFU3oA2gWR0C9zwVNYbKidX2UKGgGaAloD0MIDkqYaXuMY0CUhpRSlGgVTegDaBZHQL3PUc0cfeV1fZQoaAZoCWgPQwjohqbs9MBWQJSGlFKUaBVN6ANoFkdAvc/GjHn2ZnV9lChoBmgJaA9DCPD7Ny9OxGJAlIaUUpRoFU3oA2gWR0C90Q/TLGJfdX2UKGgGaAloD0MIZOWXwRh0X0CUhpRSlGgVTegDaBZHQL3RGBDXvph1fZQoaAZoCWgPQwgiqBq9GmljQJSGlFKUaBVN6ANoFkdAvdMiG47Rv3V9lChoBmgJaA9DCPm+uFQla2JAlIaUUpRoFU3oA2gWR0C91LntF8XvdX2UKGgGaAloD0MIWb+ZmC6eZ0CUhpRSlGgVTegDaBZHQL3XnTyauwJ1fZQoaAZoCWgPQwjeHRmrzW9aQJSGlFKUaBVN6ANoFkdAvd5+HTI/7nV9lChoBmgJaA9DCAEUI0vmO1lAlIaUUpRoFU3oA2gWR0C936C1JDmbdX2UKGgGaAloD0MIMsaH2cuwX0CUhpRSlGgVTegDaBZHQL3iKXNTtLN1fZQoaAZoCWgPQwh5W+m12ZVfQJSGlFKUaBVN6ANoFkdAveQghLXcxnV9lChoBmgJaA9DCDV8C+tG52NAlIaUUpRoFU3oA2gWR0C95Inzg/C7dX2UKGgGaAloD0MIs0KR7ueHYkCUhpRSlGgVTegDaBZHQL3kkVDa4+d1fZQoaAZoCWgPQwgBNEqXfiJiQJSGlFKUaBVN6ANoFkdAveStzhgmZ3V9lChoBmgJaA9DCHiAJy1cvmFAlIaUUpRoFU3oA2gWR0C95LeUyHmBdX2UKGgGaAloD0MINXo1QGkxY0CUhpRSlGgVTegDaBZHQL3lPFTNt651fZQoaAZoCWgPQwimKm1xjV1jQJSGlFKUaBVN6ANoFkdAvfkEQHzH0nV9lChoBmgJaA9DCOauJeSDIGVAlIaUUpRoFU3oA2gWR0C9+XmcawUydX2UKGgGaAloD0MIbVfog+WVY0CUhpRSlGgVTegDaBZHQL36z1WKdhB1fZQoaAZoCWgPQwgfTIqPT95iQJSGlFKUaBVN6ANoFkdAvfrW7ZnL73V9lChoBmgJaA9DCGhdo+VAumJAlIaUUpRoFU3oA2gWR0C9/OcPOIIodX2UKGgGaAloD0MIIy9rYoFrZkCUhpRSlGgVTegDaBZHQL3+b0HQhOh1fZQoaAZoCWgPQwjJVwIpsX5kQJSGlFKUaBVN6ANoFkdAvgEr+S8rZ3V9lChoBmgJaA9DCIZxN4jWxlpAlIaUUpRoFU3oA2gWR0C+B6FY2bXpdX2UKGgGaAloD0MI3qzB+6r4ZUCUhpRSlGgVTegDaBZHQL4ItRIz3yt1fZQoaAZoCWgPQwi6E+y/zrFeQJSGlFKUaBVN6ANoFkdAvgsYM9bHInV9lChoBmgJaA9DCI6vPbMksmBAlIaUUpRoFU3oA2gWR0C+DPOR1X/6dX2UKGgGaAloD0MILCy4H3CAZUCUhpRSlGgVTegDaBZHQL4NTjnV5KR1fZQoaAZoCWgPQwjBqnr5HUFkQJSGlFKUaBVN6ANoFkdAvg1VCPZIx3V9lChoBmgJaA9DCF2HakqyPGBAlIaUUpRoFU3oA2gWR0C+DWzQ/oq1dX2UKGgGaAloD0MIL6aZ7vUsZ0CUhpRSlGgVTegDaBZHQL4NdYCyQgd1fZQoaAZoCWgPQwjhtrbwvJFgQJSGlFKUaBVN6ANoFkdAvg30WFev6nV9lChoBmgJaA9DCDKOkewRg19AlIaUUpRoFU3oA2gWR0C+Dj43vQWvdX2UKGgGaAloD0MIcsCuJk+ZTUCUhpRSlGgVTTABaBZHQL4OXOLiuMd1fZQoaAZoCWgPQwi5p6s7lhRjQJSGlFKUaBVN6ANoFkdAviIOJcgQpXV9lChoBmgJaA9DCAkYXd6crmVAlIaUUpRoFU3oA2gWR0C+I09ZJTVEdX2UKGgGaAloD0MIboeGxagkXECUhpRSlGgVTegDaBZHQL4jWPsiSq51fZQoaAZoCWgPQwi0lCwnod1jQJSGlFKUaBVN6ANoFkdAviVzTLGJenV9lChoBmgJaA9DCCRGzy30rGVAlIaUUpRoFU3oA2gWR0C+JyuGXXyzdX2UKGgGaAloD0MI86rOaoFLY0CUhpRSlGgVTegDaBZHQL4qQ7laKUF1fZQoaAZoCWgPQwjMJVXbTdpdQJSGlFKUaBVN6ANoFkdAvjLqe/YapHV9lChoBmgJaA9DCE6AYfnzemBAlIaUUpRoFU3oA2gWR0C+NdWSt/4JdX2UKGgGaAloD0MI6LtbWaI6YECUhpRSlGgVTegDaBZHQL44I6HCXQd1fZQoaAZoCWgPQwhflQuVf+FlQJSGlFKUaBVN6ANoFkdAvjiYk3S8anV9lChoBmgJaA9DCACsjhzpk2FAlIaUUpRoFU3oA2gWR0C+OKEHIIWydX2UKGgGaAloD0MIMZV+wlmnYECUhpRSlGgVTegDaBZHQL44wUy57PZ1fZQoaAZoCWgPQwjMfXIUIPtiQJSGlFKUaBVN6ANoFkdAvjjNLBbfQHV9lChoBmgJaA9DCNrjhXT4r2BAlIaUUpRoFU3oA2gWR0C+OVu3MINWdX2UKGgGaAloD0MIZryt9No+WkCUhpRSlGgVTegDaBZHQL45rLa24NJ1fZQoaAZoCWgPQwiMhLacS0xhQJSGlFKUaBVN6ANoFkdAvjnQQrc0tXV9lChoBmgJaA9DCPVKWYY4BGFAlIaUUpRoFU3oA2gWR0C+Oh93Sro4dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:caee4ad39750edde866af3986bb7156ce04f9e03eec393e672a26ea6797b6987
|
3 |
+
size 240938
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 246.0634146345189, "std_reward": 24.805376138696293, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T11:49:58.895201"}
|