{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e2c7aa75900>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e2c7aa75990>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e2c7aa75a20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e2c7aa75ab0>", "_build": "<function ActorCriticPolicy._build at 0x7e2c7aa75b40>", "forward": "<function ActorCriticPolicy.forward at 0x7e2c7aa75bd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e2c7aa75c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e2c7aa75cf0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e2c7aa75d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e2c7aa75e10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e2c7aa75ea0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e2c7aa75f30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e2c7aa71cc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693205310970762444, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpnQ7321FW6/o2EM3EQci9l10G531umswAAgD8AAIA/Oz3HvpBK4b1Gfo06eoKIOGXjlj5o4ZO2AACAPwAAgD8N9Os9eo+DP5a9I71ENce+971TPU0nG70AAAAAAAAAAI1HAT4i238+GzMZvqfOk748yB29zgC+PQAAAAAAAAAAbSBzvk5T/LyW99G76fsRvWttXT4jaN09AACAPwAAAABNaSO930VAPz5fJr2Xap6+NFEAPHbZ3TsAAAAAAAAAAIDcS70p7HK6UcgBNIkAqq7Dw4M7coWWswAAgD8AAIA/ZivyPB3tkD+qcHe9MsGQvqHAoDwLwYG9AAAAAAAAAABAX4g9isi/P07xDD+VTmE+GWHgPCm6hD4AAAAAAAAAAA12iz38U8A/g03UPotIBD5aLps9imlqPgAAAAAAAAAAZgVRPv/Yiz/T05q9hAZevvEbDz6OAhe9AAAAAAAAAAAzk4E9Zd2gPxO12D4nFQC/g7yyvMuNnD0AAAAAAAAAAJqBrrxM8o8+lsfqPXYVEr5WjqQ8vaD5ugAAAAAAAAAAM7tpPoX+Wj8+cuW8x2+KvhDiVD3PC469AAAAAAAAAAAzMhq9UdZYPr7gQT4CTyS+X0yfPcbBVrsAAAAAAAAAAOYtmj38GJM+XkYbvs0Ejr64aEY8dtjVuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCZGUB4lhSMAWyUTUEBjAF0lEdAlO0SPuG9H3V9lChoBkdAbu8uhbnoxGgHTXcBaAhHQJTuCwjdHlR1fZQoaAZHQHCu98zAN5NoB00nAWgIR0CU7qocJdB0dX2UKGgGR0Bw7/YYixFBaAdNXQFoCEdAlO+HlGPPs3V9lChoBkdAblqrnTy8SWgHTV8BaAhHQJUCBV3ljmV1fZQoaAZHQG76TRhMJyBoB022AWgIR0CVAlGLUCq7dX2UKGgGR0Byme+Eh7mdaAdL62gIR0CVBMg+hXbNdX2UKGgGR0ByV6/336AOaAdNQQFoCEdAlQaeyquKXXV9lChoBkdAcMcfZElVtGgHTVgBaAhHQJUHKPLgXM11fZQoaAZHQGCsuAy2x6hoB03oA2gIR0CVCGJuEVWTdX2UKGgGR0BvEazVtoBaaAdNHAFoCEdAlQi5JTVDr3V9lChoBkdAcQGt52QnyGgHTVQBaAhHQJUI/KbKA8V1fZQoaAZHQHE2Y20iQkpoB02EAWgIR0CVCXqveP7vdX2UKGgGR0BwDZ7NSqEOaAdL+mgIR0CVCXkJKJ2udX2UKGgGR0By0aAYpDu0aAdNUwFoCEdAlQoh8+iaiXV9lChoBkdAbjFDfm9xqGgHTaABaAhHQJUKOgte2NN1fZQoaAZHQHCGPOhTOxBoB02JAWgIR0CVC1QvYe1bdX2UKGgGR0BtaoEfT1CgaAdNcwFoCEdAlQvei8FpwnV9lChoBkdAb7RsKsuFpWgHTWwBaAhHQJUMfxsl9jR1fZQoaAZHQHGQQYxcmjVoB00fAWgIR0CVDLfwZwXJdX2UKGgGR0Bvc+qo60Y1aAdNZQFoCEdAlQ2W6XjU/nV9lChoBkdAcORN83Mpw2gHTS4BaAhHQJUPegElme11fZQoaAZHQHJ6uhPCVKRoB010AWgIR0CVD4U1hsqKdX2UKGgGR0BSViJsO5J9aAdNAwFoCEdAlQ/KcZtNz3V9lChoBkdAcu7ehwl0HWgHTT0BaAhHQJUUA6NlyzZ1fZQoaAZHQHH4VCojv/loB00bAWgIR0CVFOCuU2UCdX2UKGgGR0BwuSH58BuGaAdNOQFoCEdAlRVkA5q/NHV9lChoBkdAcTl4zabnYGgHTUQBaAhHQJUWAl7dBSl1fZQoaAZHQHFi0Ao5PuZoB0v0aAhHQJUXNM+NcW11fZQoaAZHQG9+AHVwxWVoB01OAWgIR0CVF3l0HQhPdX2UKGgGR0BwxsUxmCiAaAdNcgFoCEdAlRe3J1aGH3V9lChoBkdAcM9g9/z8QGgHTX0BaAhHQJUX82eg+Ql1fZQoaAZHQHBNVx4ptrNoB03XAWgIR0CVGdncL0BfdX2UKGgGR0BIK3GOuJUHaAdL7mgIR0CVG7z+m3vydX2UKGgGR0Bx91yimEXdaAdNfQFoCEdAlRxT4cm0FHV9lChoBkdAcBaQHRkVe2gHTZABaAhHQJUcY5p8F6l1fZQoaAZHQHCE3c+JP69oB01GAWgIR0CVHJtihFmWdX2UKGgGR0BxiyUY8+zMaAdNHwFoCEdAlR2XT3IuG3V9lChoBkdAckdZXdTHbWgHTUEBaAhHQJUfBVsDW9V1fZQoaAZHQHDmLN8ma6VoB02qAWgIR0CVHz3evZAZdX2UKGgGR0Bytm3KB/ZvaAdNOgFoCEdAlSM1uWKMvXV9lChoBkdAbwvUKArhBWgHTTwBaAhHQJUkD6Fdszl1fZQoaAZHQHFhLxAjY7JoB001AWgIR0CVJCkvboKVdX2UKGgGR0Bvwj433pOfaAdNHgFoCEdAlSSxvJiiI3V9lChoBkdAcjEJF9a2W2gHTTsBaAhHQJUmaSxJNCZ1fZQoaAZHQHEL3uiN83NoB00xAWgIR0CVJmix3V0+dX2UKGgGR0Bw544ku6EraAdNegFoCEdAlSkiNfgJkXV9lChoBkdAcijSsbNr02gHTScBaAhHQJUpOFIuoP11fZQoaAZHQG9bSsr/bTNoB00uAWgIR0CVKia99MK1dX2UKGgGR0ByxSq2jO9naAdNvAFoCEdAlSpbrxAjZHV9lChoBkdAb8f8w5/9YWgHTT8BaAhHQJUqjBguyu91fZQoaAZHQHIdHhn8KohoB00BAWgIR0CVKrY9xIatdX2UKGgGR0Bwrq3pfQa8aAdNSwFoCEdAlSsF+mWMTHV9lChoBkdAcKNfRNRFZ2gHTVgBaAhHQJU9UmMOwxF1fZQoaAZHQEGsApazNUxoB0vmaAhHQJU+gomXw9d1fZQoaAZHQG140Q9RrJtoB03PAWgIR0CVPqaGHpKSdX2UKGgGR0Bx/noIOYplaAdNEgFoCEdAlT+Gqo60Y3V9lChoBkdAcjR6JZW7v2gHTTkBaAhHQJVA5Hz6JqJ1fZQoaAZHQHDBYPsiSq5oB00QAWgIR0CVQQmBvrGBdX2UKGgGR0BuMnpQk5ZKaAdNXgFoCEdAlUGNqQA+6nV9lChoBkdAcaLQ2MsH0WgHTTsBaAhHQJVCbmbLEDR1fZQoaAZHQHEXT81n/T9oB007AWgIR0CVROnV5KODdX2UKGgGR0BxufOpsGgSaAdNQQFoCEdAlUU2SpzcRHV9lChoBkdAcJ5glF+d9WgHTSwBaAhHQJVFXXsgMc91fZQoaAZHQHHAGEK3NLVoB00EAWgIR0CVRjbVjI7vdX2UKGgGR0BxyVkhA4XGaAdNLgFoCEdAlUZGukk8inV9lChoBkdARwCSs8xKx2gHS+RoCEdAlUZZ00WM0nV9lChoBkdAb8Au9OARTWgHTUMBaAhHQJVGW29cry11fZQoaAZHQGwK1zQu27ZoB00MAWgIR0CVR8BYmsvJdX2UKGgGR0BASw+2VmjCaAdL3WgIR0CVSJDmbLEDdX2UKGgGR0A0fiiZfD1oaAdL6WgIR0CVSNe1KGtZdX2UKGgGR0BSP59d/rjYaAdLy2gIR0CVSWRZlnRLdX2UKGgGR0Buu6DmKZUlaAdNvwFoCEdAlUqFhgE2YXV9lChoBkdAVJwKOT7l72gHS6poCEdAlUvKEnLJS3V9lChoBkdAbZ4seXAuZmgHTTQBaAhHQJVL+09hZyN1fZQoaAZHQCdPSro4dZJoB0veaAhHQJVMT7Ikqtp1fZQoaAZHQHGEN3B55Z9oB00HAWgIR0CVTzduHerNdX2UKGgGR0ByPIakyk9EaAdNGwFoCEdAlVBYo3JgcHV9lChoBkdAch8b0e2d/mgHTVcCaAhHQJVQdt0mtyR1fZQoaAZHQHB/hD5TIeZoB01KAWgIR0CVURN4JNTMdX2UKGgGR0BwAnJ6po9LaAdNcgFoCEdAlVNXVTaTOnV9lChoBkdAbSJRfF72MGgHTTwBaAhHQJVUYlyBCld1fZQoaAZHQHJwqGlANXpoB014AWgIR0CVVQ4wyqMndX2UKGgGR0BwoUY2sJY1aAdNMgFoCEdAlVUnGXHBDXV9lChoBkdAYiWFPi1iOWgHTegDaAhHQJVXteC04R51fZQoaAZHQHAA04FRpDhoB00wAWgIR0CVWC4cm0E6dX2UKGgGR0BvGsd/8VHnaAdNZwFoCEdAlVhTLOiWV3V9lChoBkdAcDezch1TzmgHTTEBaAhHQJVaPQY1pCd1fZQoaAZHQEXngQYk3S9oB0vxaAhHQJVdBjH4oJB1fZQoaAZHQHADmE0zj3poB02HAWgIR0CVXsOPeYUndX2UKGgGR0Bu9Vrj5sTGaAdNDwFoCEdAlV9kmY0EYHV9lChoBkdAcpFByS3b22gHTTYBaAhHQJVg2bhFVkt1fZQoaAZHQHFFSml67d1oB01wAWgIR0CVYwkmQbMpdX2UKGgGR0ByzhIJ7b+MaAdNGAFoCEdAlWOQJswcpHV9lChoBkdAcetTYukDZGgHTToBaAhHQJVkbOdGy5Z1fZQoaAZHQHEDescQyyloB03eAWgIR0CVZKUFjd56dX2UKGgGR0ByoEy0rsjWaAdNIAFoCEdAlWTAlOXVsnV9lChoBkdAcUgBBiTdL2gHTVwBaAhHQJVnbIU8FIN1fZQoaAZHQG/ywYUFjd5oB00jAWgIR0CVZ3VymygPdX2UKGgGR0BxtFigCfYjaAdNIwFoCEdAlWeS88La3HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |