File size: 6,723 Bytes
76cda8c
 
 
 
 
 
 
 
 
 
 
 
dcd8178
76cda8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f48715e
 
 
 
 
 
 
 
 
 
 
 
 
76cda8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78fc093
76cda8c
f48715e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283c342
f48715e
 
 
283c342
 
f48715e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d32c15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
---
license: apache-2.0
language:
- en
tags:
- ColBERT
- RAGatouille
- passage-retrieval
---

# answerai-colbert-small-v1

**answerai-colbert-small-v1** is a new, proof-of-concept model by [Answer.AI](https://answer.ai), showing the strong performance multi-vector models with the new [JaColBERTv2.5 training recipe](https://arxiv.org/abs/2407.20750) and some extra tweaks can reach, even with just **33 million parameters**.

While being MiniLM-sized, it outperforms all previous similarly-sized models on common benchmarks, and even outperforms much larger popular models such as e5-large-v2 or bge-base-en-v1.5.

For more information about this model or how it was trained, head over to the [announcement blogpost](https://www.answer.ai/posts/2024-08-13-small-but-mighty-colbert.html).

## Usage

### Installation

This model was designed with the upcoming RAGatouille overhaul in mind. However, it's compatible with all recent ColBERT implementations!

To use it, you can either use the Stanford ColBERT library, or RAGatouille. You can install both or either by simply running.

```sh
pip install --upgrade ragatouille
pip install --upgrade colbert-ai
```

If you're interested in using this model as a re-ranker (it vastly outperforms cross-encoders its size!), you can do so via the [rerankers](https://github.com/AnswerDotAI/rerankers) library:
```sh
pip install --upgrade rerankers[transformers]
```

### Rerankers

```python
from rerankers import Reranker

ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type='colbert')
docs = ['Hayao Miyazaki is a Japanese director, born on [...]', 'Walt Disney is an American author, director and [...]', ...]
query = 'Who directed spirited away?'
ranker.rank(query=query, docs=docs)
```

### RAGatouille

```python
from ragatouille import RAGPretrainedModel

RAG = RAGPretrainedModel.from_pretrained("answerdotai/answerai-colbert-small-v1")

docs = ['Hayao Miyazaki is a Japanese director, born on [...]', 'Walt Disney is an American author, director and [...]', ...]

RAG.index(documents, index_name="ghibli")

query = 'Who directed spirited away?'
results = RAG.search(query)
```

### Stanford ColBERT

#### Indexing

```python
from colbert import Indexer
from colbert.infra import Run, RunConfig, ColBERTConfig

INDEX_NAME = "DEFINE_HERE" 

if __name__ == "__main__":
    config = ColBERTConfig(
        doc_maxlen=512,
        nbits=2
    )
    indexer = Indexer(
        checkpoint="answerdotai/answerai-colbert-small-v1",
        config=config,
    )
    docs = ['Hayao Miyazaki is a Japanese director, born on [...]', 'Walt Disney is an American author, director and [...]', ...]

    indexer.index(name=INDEX_NAME, collection=docs)
```

#### Querying

```python
from colbert import Searcher
from colbert.infra import Run, RunConfig, ColBERTConfig

INDEX_NAME = "THE_INDEX_YOU_CREATED" 
k = 10 

if __name__ == "__main__":
    config = ColBERTConfig(
        query_maxlen=32 # Adjust as needed, we recommend the nearest higher multiple of 16 to your query
    )
    searcher = Searcher(
        index=index_name, 
        config=config
    ) 
    query = 'Who directed spirited away?'
    results = searcher.search(query, k=k)
```


#### Extracting Vectors

Finally, if you want to extract individula vectors, you can use the model this way:


```python
from colbert.modeling.checkpoint import Checkpoint

ckpt = Checkpoint("answerdotai/answerai-colbert-small-v1", colbert_config=ColBERTConfig())
embedded_query = ckpt.queryFromText(["Who dubs Howl's in English?"], bsize=16)
```


## Results

### Against single-vector models

![](https://www.answer.ai/posts/images/minicolbert/small_results.png)


| Dataset / Model | answer-colbert-s | snowflake-s | bge-small-en | bge-base-en |
|:-----------------|:-----------------:|:-------------:|:-------------:|:-------------:|
| **Size**        |     33M (1x)     |   33M (1x)   |   33M (1x)   | **109M (3.3x)** |
| **BEIR AVG**    |      **53.79**       |    51.99     |    51.68     |    53.25      |
| **FiQA2018**    |      **41.15**       |    40.65     |    40.34     |    40.65      |
| **HotpotQA**    |    **76.11**     |    66.54     |    69.94     |    72.6       |
| **MSMARCO**     |    **43.5**      |    40.23     |    40.83     |    41.35      |
| **NQ**          |      **59.1**        |    50.9      |    50.18     |    54.15      |
| **TRECCOVID**   |    **84.59**     |    80.12     |    75.9      |    78.07      |
| **ArguAna**     |      50.09       |    57.59     |    59.55     |  **63.61**    |
| **ClimateFEVER**|      33.07       |    **35.2**      |    31.84     |    31.17      |
| **CQADupstackRetrieval** |  38.75  |    39.65     |    39.05     |    **42.35**      |
| **DBPedia**     |    **45.58**     |    41.02     |    40.03     |    40.77      |
| **FEVER**       |    **90.96**     |    87.13     |    86.64     |    86.29      |
| **NFCorpus**    |    37.3      |    34.92     |    34.3      |    **37.39**      |
| **QuoraRetrieval** |    87.72      |    88.41     |  88.78   |    **88.9**       |
| **SCIDOCS**     |      18.42       |  **21.82**   |    20.52     |    21.73      |
| **SciFact**     |    **74.77**     |    72.22     |    71.28     |    74.04      |
| **Touche2020**  |      25.69       |    23.48     |    **26.04**     |    25.7       |

### Against ColBERTv2.0

| Dataset / Model | answerai-colbert-small-v1 | ColBERTv2.0 |
|:-----------------|:-----------------------:|:------------:|
| **BEIR AVG**    |      **53.79**       |   50.02 |
| **DBPedia**     |    **45.58**     |    44.6     |
| **FiQA2018**    |    **41.15**     |    35.6     |
| **NQ**          |    **59.1**      |    56.2     |
| **HotpotQA**    |    **76.11**     |    66.7     |
| **NFCorpus**    |    **37.3**      |    33.8     |
| **TRECCOVID**   |    **84.59**     |    73.3     |
| **Touche2020**  |      25.69       |  **26.3**   |
| **ArguAna**     |    **50.09**     |    46.3     |
| **ClimateFEVER**|    **33.07**     |    17.6     |
| **FEVER**       |    **90.96**     |    78.5     |
| **QuoraRetrieval** |    **87.72**     |  85.2   |
| **SCIDOCS**     |    **18.42**     |    15.4     |
| **SciFact**     |    **74.77**     |    69.3     |


## Referencing

We'll most likely eventually release a technical report. In the meantime, if you use this model or other models following the JaColBERTv2.5 recipe and would like to give us credit, please cite the JaColBERTv2.5 journal pre-print:

```
@article{clavie2024jacolbertv2,
  title={JaColBERTv2.5: Optimising Multi-Vector Retrievers to Create State-of-the-Art Japanese Retrievers with Constrained Resources},
  author={Clavi{\'e}, Benjamin},
  journal={arXiv preprint arXiv:2407.20750},
  year={2024}
}
```