anthonymeo
commited on
Commit
•
3f04944
1
Parent(s):
a815a94
Delete model-files
Browse files- model-files/1_Pooling/config.json +0 -10
- model-files/README.md +0 -353
- model-files/config.json +0 -24
- model-files/config_sentence_transformers.json +0 -10
- model-files/model.safetensors +0 -3
- model-files/modules.json +0 -14
- model-files/sentence_bert_config.json +0 -4
- model-files/special_tokens_map.json +0 -37
- model-files/tokenizer.json +0 -0
- model-files/tokenizer_config.json +0 -57
- model-files/vocab.txt +0 -0
model-files/1_Pooling/config.json
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"word_embedding_dimension": 768,
|
3 |
-
"pooling_mode_cls_token": true,
|
4 |
-
"pooling_mode_mean_tokens": false,
|
5 |
-
"pooling_mode_max_tokens": false,
|
6 |
-
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
-
"pooling_mode_weightedmean_tokens": false,
|
8 |
-
"pooling_mode_lasttoken": false,
|
9 |
-
"include_prompt": true
|
10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-files/README.md
DELETED
@@ -1,353 +0,0 @@
|
|
1 |
-
---
|
2 |
-
base_model: sentence-transformers/msmarco-distilbert-base-tas-b
|
3 |
-
datasets: []
|
4 |
-
language: []
|
5 |
-
library_name: sentence-transformers
|
6 |
-
pipeline_tag: sentence-similarity
|
7 |
-
tags:
|
8 |
-
- sentence-transformers
|
9 |
-
- sentence-similarity
|
10 |
-
- feature-extraction
|
11 |
-
- generated_from_trainer
|
12 |
-
- dataset_size:6192
|
13 |
-
- loss:MultipleNegativesRankingLoss
|
14 |
-
widget:
|
15 |
-
- source_sentence: how to calculate a service load
|
16 |
-
sentences:
|
17 |
-
- what is the height of a lead in antenna
|
18 |
-
- types se cable
|
19 |
-
- what is the purpose of a circuit breaker
|
20 |
-
- source_sentence: minimum ampacity for ungrounded conductors
|
21 |
-
sentences:
|
22 |
-
- types of mv cables
|
23 |
-
- can optical fiber cables be installed in raceway
|
24 |
-
- what is a motor and motor operated equipment
|
25 |
-
- source_sentence: what is the code for a circuit breaker
|
26 |
-
sentences:
|
27 |
-
- what color insulation is required to be grounded
|
28 |
-
- what is a suitable marker for antflix
|
29 |
-
- what conductors are permitted to originate in auxiliary gutter
|
30 |
-
- source_sentence: what is plfa cable
|
31 |
-
sentences:
|
32 |
-
- what is a noncombustible surface
|
33 |
-
- how much liquid can be enclosed in a capacitor
|
34 |
-
- what is flammable gas in a busway
|
35 |
-
- source_sentence: how many volts to ground a transformer
|
36 |
-
sentences:
|
37 |
-
- what is a grounded conductor
|
38 |
-
- how long is a plenum cable
|
39 |
-
- what is the operating voltage of a transformer
|
40 |
-
---
|
41 |
-
|
42 |
-
# SentenceTransformer based on sentence-transformers/msmarco-distilbert-base-tas-b
|
43 |
-
|
44 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
45 |
-
|
46 |
-
## Model Details
|
47 |
-
|
48 |
-
### Model Description
|
49 |
-
- **Model Type:** Sentence Transformer
|
50 |
-
- **Base model:** [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) <!-- at revision 996dfc6404137c6d89c7bf647a4bae62fdf8dd9a -->
|
51 |
-
- **Maximum Sequence Length:** 1024 tokens
|
52 |
-
- **Output Dimensionality:** 768 tokens
|
53 |
-
- **Similarity Function:** Cosine Similarity
|
54 |
-
<!-- - **Training Dataset:** Unknown -->
|
55 |
-
<!-- - **Language:** Unknown -->
|
56 |
-
<!-- - **License:** Unknown -->
|
57 |
-
|
58 |
-
### Model Sources
|
59 |
-
|
60 |
-
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
61 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
62 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
63 |
-
|
64 |
-
### Full Model Architecture
|
65 |
-
|
66 |
-
```
|
67 |
-
SentenceTransformer(
|
68 |
-
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
69 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
70 |
-
)
|
71 |
-
```
|
72 |
-
|
73 |
-
## Usage
|
74 |
-
|
75 |
-
### Direct Usage (Sentence Transformers)
|
76 |
-
|
77 |
-
First install the Sentence Transformers library:
|
78 |
-
|
79 |
-
```bash
|
80 |
-
pip install -U sentence-transformers
|
81 |
-
```
|
82 |
-
|
83 |
-
Then you can load this model and run inference.
|
84 |
-
```python
|
85 |
-
from sentence_transformers import SentenceTransformer
|
86 |
-
|
87 |
-
# Download from the 🤗 Hub
|
88 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
89 |
-
# Run inference
|
90 |
-
sentences = [
|
91 |
-
'how many volts to ground a transformer',
|
92 |
-
'how long is a plenum cable',
|
93 |
-
'what is the operating voltage of a transformer',
|
94 |
-
]
|
95 |
-
embeddings = model.encode(sentences)
|
96 |
-
print(embeddings.shape)
|
97 |
-
# [3, 768]
|
98 |
-
|
99 |
-
# Get the similarity scores for the embeddings
|
100 |
-
similarities = model.similarity(embeddings, embeddings)
|
101 |
-
print(similarities.shape)
|
102 |
-
# [3, 3]
|
103 |
-
```
|
104 |
-
|
105 |
-
<!--
|
106 |
-
### Direct Usage (Transformers)
|
107 |
-
|
108 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
109 |
-
|
110 |
-
</details>
|
111 |
-
-->
|
112 |
-
|
113 |
-
<!--
|
114 |
-
### Downstream Usage (Sentence Transformers)
|
115 |
-
|
116 |
-
You can finetune this model on your own dataset.
|
117 |
-
|
118 |
-
<details><summary>Click to expand</summary>
|
119 |
-
|
120 |
-
</details>
|
121 |
-
-->
|
122 |
-
|
123 |
-
<!--
|
124 |
-
### Out-of-Scope Use
|
125 |
-
|
126 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
127 |
-
-->
|
128 |
-
|
129 |
-
<!--
|
130 |
-
## Bias, Risks and Limitations
|
131 |
-
|
132 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
133 |
-
-->
|
134 |
-
|
135 |
-
<!--
|
136 |
-
### Recommendations
|
137 |
-
|
138 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
139 |
-
-->
|
140 |
-
|
141 |
-
## Training Details
|
142 |
-
|
143 |
-
### Training Dataset
|
144 |
-
|
145 |
-
#### Unnamed Dataset
|
146 |
-
|
147 |
-
|
148 |
-
* Size: 6,192 training samples
|
149 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
|
150 |
-
* Approximate statistics based on the first 1000 samples:
|
151 |
-
| | sentence_0 | sentence_1 | sentence_2 |
|
152 |
-
|:--------|:---------------------------------------------------------------------------------|:-------------------|:-------------------|
|
153 |
-
| type | string | dict | dict |
|
154 |
-
| details | <ul><li>min: 5 tokens</li><li>mean: 9.71 tokens</li><li>max: 33 tokens</li></ul> | <ul><li></li></ul> | <ul><li></li></ul> |
|
155 |
-
* Samples:
|
156 |
-
| sentence_0 | sentence_1 | sentence_2 |
|
157 |
-
|:----------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
158 |
-
| <code>what is a metal water piping system</code> | <code>{'content': 'Metal water piping system(s) installed in or attached to a building or structure shall be bonded to any of the following: Service equipment enclosureGrounded conductor at the serviceGrounding electrode conductor, if of sufficient sizeOne or more grounding electrodes used, if the grounding electrode conductor or bonding jumper to the grounding electrode is of sufficient sizeThe bonding jumper(s) shall be installed in accordance with 250.64(A), (B), and (E). The points of attachment of the bonding jumper(s) s'}</code> | <code>{'content': 'Metal fences enclosing, and other metal structures in or surrounding, a substation with exposed electrical conductors and equipment shall be grounded and bonded to limit step, touch, and transfer voltages. [250.194](https://2023.antflix.net#250.194)'}</code> |
|
159 |
-
| <code>how many amperes should a circuit breaker be</code> | <code>{'content': '10 amperes, provided all the following conditions are met: Continuous loads do not exceed 8 amperesOvercurrent protection is provided by one of the following:Branch-circuit-rated circuit breakers are listed and marked for use with 14 AWG copper-clad aluminum conductor.Branch-circuit-rated fuses are listed and marked for use with 14 AWG copper-clad aluminum conductor. [240.4(D)(3)](https://2023.antflix.net#240.4(D)(3))'}</code> | <code>{'content': 'For installations to supply only limited loads of a single branch circuit, the branch circuit disconnecting means shall have a rating of not less than 15 amperes. [225.39(A)](https://2023.antflix.net#225.39(A))'}</code> |
|
160 |
-
| <code>phase converter installation</code> | <code>{'content': 'This article covers the installation and use of phase converters. [455.1](https://2023.antflix.net#455.1)'}</code> | <code>{'content': 'The 120-volt ac side of the voltage converter shall be wired in full conformity with the requirements of Parts I, II, and IV of this article for 120-volt electrical systems. Exception: Converters supplied as an integral part of a listed appliance shall not be subject to 551.20(B). All converters and transformers shall be listed for use in recreational vehicles and designed or equipped to provide overtemperature protection. To determine the converter rating, the following percentages shall be applied to the '}</code> |
|
161 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
162 |
-
```json
|
163 |
-
{
|
164 |
-
"scale": 20.0,
|
165 |
-
"similarity_fct": "cos_sim"
|
166 |
-
}
|
167 |
-
```
|
168 |
-
|
169 |
-
### Training Hyperparameters
|
170 |
-
#### Non-Default Hyperparameters
|
171 |
-
|
172 |
-
- `per_device_train_batch_size`: 16
|
173 |
-
- `per_device_eval_batch_size`: 16
|
174 |
-
- `num_train_epochs`: 10
|
175 |
-
- `multi_dataset_batch_sampler`: round_robin
|
176 |
-
|
177 |
-
#### All Hyperparameters
|
178 |
-
<details><summary>Click to expand</summary>
|
179 |
-
|
180 |
-
- `overwrite_output_dir`: False
|
181 |
-
- `do_predict`: False
|
182 |
-
- `prediction_loss_only`: True
|
183 |
-
- `per_device_train_batch_size`: 16
|
184 |
-
- `per_device_eval_batch_size`: 16
|
185 |
-
- `per_gpu_train_batch_size`: None
|
186 |
-
- `per_gpu_eval_batch_size`: None
|
187 |
-
- `gradient_accumulation_steps`: 1
|
188 |
-
- `eval_accumulation_steps`: None
|
189 |
-
- `learning_rate`: 5e-05
|
190 |
-
- `weight_decay`: 0.0
|
191 |
-
- `adam_beta1`: 0.9
|
192 |
-
- `adam_beta2`: 0.999
|
193 |
-
- `adam_epsilon`: 1e-08
|
194 |
-
- `max_grad_norm`: 1
|
195 |
-
- `num_train_epochs`: 10
|
196 |
-
- `max_steps`: -1
|
197 |
-
- `lr_scheduler_type`: linear
|
198 |
-
- `lr_scheduler_kwargs`: {}
|
199 |
-
- `warmup_ratio`: 0.0
|
200 |
-
- `warmup_steps`: 0
|
201 |
-
- `log_level`: passive
|
202 |
-
- `log_level_replica`: warning
|
203 |
-
- `log_on_each_node`: True
|
204 |
-
- `logging_nan_inf_filter`: True
|
205 |
-
- `save_safetensors`: True
|
206 |
-
- `save_on_each_node`: False
|
207 |
-
- `save_only_model`: False
|
208 |
-
- `no_cuda`: False
|
209 |
-
- `use_cpu`: False
|
210 |
-
- `use_mps_device`: False
|
211 |
-
- `seed`: 42
|
212 |
-
- `data_seed`: None
|
213 |
-
- `jit_mode_eval`: False
|
214 |
-
- `use_ipex`: False
|
215 |
-
- `bf16`: False
|
216 |
-
- `fp16`: False
|
217 |
-
- `fp16_opt_level`: O1
|
218 |
-
- `half_precision_backend`: auto
|
219 |
-
- `bf16_full_eval`: False
|
220 |
-
- `fp16_full_eval`: False
|
221 |
-
- `tf32`: None
|
222 |
-
- `local_rank`: 0
|
223 |
-
- `ddp_backend`: None
|
224 |
-
- `tpu_num_cores`: None
|
225 |
-
- `tpu_metrics_debug`: False
|
226 |
-
- `debug`: []
|
227 |
-
- `dataloader_drop_last`: False
|
228 |
-
- `dataloader_num_workers`: 0
|
229 |
-
- `dataloader_prefetch_factor`: None
|
230 |
-
- `past_index`: -1
|
231 |
-
- `disable_tqdm`: False
|
232 |
-
- `remove_unused_columns`: True
|
233 |
-
- `label_names`: None
|
234 |
-
- `load_best_model_at_end`: False
|
235 |
-
- `ignore_data_skip`: False
|
236 |
-
- `fsdp`: []
|
237 |
-
- `fsdp_min_num_params`: 0
|
238 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
239 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
240 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
|
241 |
-
- `deepspeed`: None
|
242 |
-
- `label_smoothing_factor`: 0.0
|
243 |
-
- `optim`: adamw_torch
|
244 |
-
- `optim_args`: None
|
245 |
-
- `adafactor`: False
|
246 |
-
- `group_by_length`: False
|
247 |
-
- `length_column_name`: length
|
248 |
-
- `ddp_find_unused_parameters`: None
|
249 |
-
- `ddp_bucket_cap_mb`: None
|
250 |
-
- `ddp_broadcast_buffers`: False
|
251 |
-
- `dataloader_pin_memory`: True
|
252 |
-
- `dataloader_persistent_workers`: False
|
253 |
-
- `skip_memory_metrics`: True
|
254 |
-
- `use_legacy_prediction_loop`: False
|
255 |
-
- `push_to_hub`: False
|
256 |
-
- `resume_from_checkpoint`: None
|
257 |
-
- `hub_model_id`: None
|
258 |
-
- `hub_strategy`: every_save
|
259 |
-
- `hub_private_repo`: False
|
260 |
-
- `hub_always_push`: False
|
261 |
-
- `gradient_checkpointing`: False
|
262 |
-
- `gradient_checkpointing_kwargs`: None
|
263 |
-
- `include_inputs_for_metrics`: False
|
264 |
-
- `fp16_backend`: auto
|
265 |
-
- `push_to_hub_model_id`: None
|
266 |
-
- `push_to_hub_organization`: None
|
267 |
-
- `mp_parameters`:
|
268 |
-
- `auto_find_batch_size`: False
|
269 |
-
- `full_determinism`: False
|
270 |
-
- `torchdynamo`: None
|
271 |
-
- `ray_scope`: last
|
272 |
-
- `ddp_timeout`: 1800
|
273 |
-
- `torch_compile`: False
|
274 |
-
- `torch_compile_backend`: None
|
275 |
-
- `torch_compile_mode`: None
|
276 |
-
- `dispatch_batches`: None
|
277 |
-
- `split_batches`: None
|
278 |
-
- `include_tokens_per_second`: False
|
279 |
-
- `include_num_input_tokens_seen`: False
|
280 |
-
- `neftune_noise_alpha`: None
|
281 |
-
- `optim_target_modules`: None
|
282 |
-
- `batch_sampler`: batch_sampler
|
283 |
-
- `multi_dataset_batch_sampler`: round_robin
|
284 |
-
|
285 |
-
</details>
|
286 |
-
|
287 |
-
### Training Logs
|
288 |
-
| Epoch | Step | Training Loss |
|
289 |
-
|:------:|:----:|:-------------:|
|
290 |
-
| 1.2920 | 500 | 0.2747 |
|
291 |
-
| 2.5840 | 1000 | 0.0887 |
|
292 |
-
| 3.8760 | 1500 | 0.0512 |
|
293 |
-
| 5.1680 | 2000 | 0.0344 |
|
294 |
-
| 6.4599 | 2500 | 0.0279 |
|
295 |
-
| 7.7519 | 3000 | 0.0213 |
|
296 |
-
| 9.0439 | 3500 | 0.02 |
|
297 |
-
|
298 |
-
|
299 |
-
### Framework Versions
|
300 |
-
- Python: 3.10.13
|
301 |
-
- Sentence Transformers: 3.0.1
|
302 |
-
- Transformers: 4.39.3
|
303 |
-
- PyTorch: 2.1.2
|
304 |
-
- Accelerate: 0.32.1
|
305 |
-
- Datasets: 2.20.0
|
306 |
-
- Tokenizers: 0.15.2
|
307 |
-
|
308 |
-
## Citation
|
309 |
-
|
310 |
-
### BibTeX
|
311 |
-
|
312 |
-
#### Sentence Transformers
|
313 |
-
```bibtex
|
314 |
-
@inproceedings{reimers-2019-sentence-bert,
|
315 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
316 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
317 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
318 |
-
month = "11",
|
319 |
-
year = "2019",
|
320 |
-
publisher = "Association for Computational Linguistics",
|
321 |
-
url = "https://arxiv.org/abs/1908.10084",
|
322 |
-
}
|
323 |
-
```
|
324 |
-
|
325 |
-
#### MultipleNegativesRankingLoss
|
326 |
-
```bibtex
|
327 |
-
@misc{henderson2017efficient,
|
328 |
-
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
329 |
-
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
330 |
-
year={2017},
|
331 |
-
eprint={1705.00652},
|
332 |
-
archivePrefix={arXiv},
|
333 |
-
primaryClass={cs.CL}
|
334 |
-
}
|
335 |
-
```
|
336 |
-
|
337 |
-
<!--
|
338 |
-
## Glossary
|
339 |
-
|
340 |
-
*Clearly define terms in order to be accessible across audiences.*
|
341 |
-
-->
|
342 |
-
|
343 |
-
<!--
|
344 |
-
## Model Card Authors
|
345 |
-
|
346 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
347 |
-
-->
|
348 |
-
|
349 |
-
<!--
|
350 |
-
## Model Card Contact
|
351 |
-
|
352 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
353 |
-
-->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-files/config.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "sentence-transformers/msmarco-distilbert-base-tas-b",
|
3 |
-
"activation": "gelu",
|
4 |
-
"architectures": [
|
5 |
-
"DistilBertModel"
|
6 |
-
],
|
7 |
-
"attention_dropout": 0.1,
|
8 |
-
"dim": 768,
|
9 |
-
"dropout": 0.1,
|
10 |
-
"hidden_dim": 3072,
|
11 |
-
"initializer_range": 0.02,
|
12 |
-
"max_position_embeddings": 512,
|
13 |
-
"model_type": "distilbert",
|
14 |
-
"n_heads": 12,
|
15 |
-
"n_layers": 6,
|
16 |
-
"pad_token_id": 0,
|
17 |
-
"qa_dropout": 0.1,
|
18 |
-
"seq_classif_dropout": 0.2,
|
19 |
-
"sinusoidal_pos_embds": false,
|
20 |
-
"tie_weights_": true,
|
21 |
-
"torch_dtype": "float32",
|
22 |
-
"transformers_version": "4.39.3",
|
23 |
-
"vocab_size": 30522
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-files/config_sentence_transformers.json
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"__version__": {
|
3 |
-
"sentence_transformers": "3.0.1",
|
4 |
-
"transformers": "4.39.3",
|
5 |
-
"pytorch": "2.1.2"
|
6 |
-
},
|
7 |
-
"prompts": {},
|
8 |
-
"default_prompt_name": null,
|
9 |
-
"similarity_fn_name": null
|
10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-files/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:56ee031bd8b87ef0a998590ee2c3b0ffcad36deae7dc95b546a148ecf8e5ef77
|
3 |
-
size 265462608
|
|
|
|
|
|
|
|
model-files/modules.json
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"idx": 0,
|
4 |
-
"name": "0",
|
5 |
-
"path": "",
|
6 |
-
"type": "sentence_transformers.models.Transformer"
|
7 |
-
},
|
8 |
-
{
|
9 |
-
"idx": 1,
|
10 |
-
"name": "1",
|
11 |
-
"path": "1_Pooling",
|
12 |
-
"type": "sentence_transformers.models.Pooling"
|
13 |
-
}
|
14 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-files/sentence_bert_config.json
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"max_seq_length": 1024,
|
3 |
-
"do_lower_case": false
|
4 |
-
}
|
|
|
|
|
|
|
|
|
|
model-files/special_tokens_map.json
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cls_token": {
|
3 |
-
"content": "[CLS]",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"mask_token": {
|
10 |
-
"content": "[MASK]",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"pad_token": {
|
17 |
-
"content": "[PAD]",
|
18 |
-
"lstrip": false,
|
19 |
-
"normalized": false,
|
20 |
-
"rstrip": false,
|
21 |
-
"single_word": false
|
22 |
-
},
|
23 |
-
"sep_token": {
|
24 |
-
"content": "[SEP]",
|
25 |
-
"lstrip": false,
|
26 |
-
"normalized": false,
|
27 |
-
"rstrip": false,
|
28 |
-
"single_word": false
|
29 |
-
},
|
30 |
-
"unk_token": {
|
31 |
-
"content": "[UNK]",
|
32 |
-
"lstrip": false,
|
33 |
-
"normalized": false,
|
34 |
-
"rstrip": false,
|
35 |
-
"single_word": false
|
36 |
-
}
|
37 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-files/tokenizer.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
model-files/tokenizer_config.json
DELETED
@@ -1,57 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"added_tokens_decoder": {
|
3 |
-
"0": {
|
4 |
-
"content": "[PAD]",
|
5 |
-
"lstrip": false,
|
6 |
-
"normalized": false,
|
7 |
-
"rstrip": false,
|
8 |
-
"single_word": false,
|
9 |
-
"special": true
|
10 |
-
},
|
11 |
-
"100": {
|
12 |
-
"content": "[UNK]",
|
13 |
-
"lstrip": false,
|
14 |
-
"normalized": false,
|
15 |
-
"rstrip": false,
|
16 |
-
"single_word": false,
|
17 |
-
"special": true
|
18 |
-
},
|
19 |
-
"101": {
|
20 |
-
"content": "[CLS]",
|
21 |
-
"lstrip": false,
|
22 |
-
"normalized": false,
|
23 |
-
"rstrip": false,
|
24 |
-
"single_word": false,
|
25 |
-
"special": true
|
26 |
-
},
|
27 |
-
"102": {
|
28 |
-
"content": "[SEP]",
|
29 |
-
"lstrip": false,
|
30 |
-
"normalized": false,
|
31 |
-
"rstrip": false,
|
32 |
-
"single_word": false,
|
33 |
-
"special": true
|
34 |
-
},
|
35 |
-
"103": {
|
36 |
-
"content": "[MASK]",
|
37 |
-
"lstrip": false,
|
38 |
-
"normalized": false,
|
39 |
-
"rstrip": false,
|
40 |
-
"single_word": false,
|
41 |
-
"special": true
|
42 |
-
}
|
43 |
-
},
|
44 |
-
"clean_up_tokenization_spaces": true,
|
45 |
-
"cls_token": "[CLS]",
|
46 |
-
"do_basic_tokenize": true,
|
47 |
-
"do_lower_case": true,
|
48 |
-
"mask_token": "[MASK]",
|
49 |
-
"model_max_length": 512,
|
50 |
-
"never_split": null,
|
51 |
-
"pad_token": "[PAD]",
|
52 |
-
"sep_token": "[SEP]",
|
53 |
-
"strip_accents": null,
|
54 |
-
"tokenize_chinese_chars": true,
|
55 |
-
"tokenizer_class": "DistilBertTokenizer",
|
56 |
-
"unk_token": "[UNK]"
|
57 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model-files/vocab.txt
DELETED
The diff for this file is too large to render.
See raw diff
|
|