File size: 5,512 Bytes
678e4f4
 
 
 
4a69858
678e4f4
 
c4a7165
4a69858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7165
 
 
4a69858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7165
 
 
4a69858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7165
 
 
4a69858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7165
 
 
4a69858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7165
 
 
4a69858
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7165
 
 
4a69858
 
 
678e4f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ec09f5
678e4f4
8ec09f5
678e4f4
 
 
 
3adeae7
678e4f4
 
3adeae7
4a69858
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a7165
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
language:
- en
- zh
license: other
tags:
- chat
base_model: Qwen/Qwen2-72B-Instruct
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: magnum-72b-v1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 76.06
      name: strict accuracy
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 76.06
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 57.65
      name: normalized accuracy
    - type: acc_norm
      value: 57.65
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 35.27
      name: exact match
    - type: exact_match
      value: 35.27
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.79
      name: acc_norm
    - type: acc_norm
      value: 18.79
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 15.62
      name: acc_norm
    - type: acc_norm
      value: 15.62
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 49.64
      name: accuracy
    - type: acc
      value: 49.85
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=alpindale/magnum-72b-v1
      name: Open LLM Leaderboard
---

![](https://files.catbox.moe/ngqnb1.png)

This is the first in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus. This model is fine-tuned on top of [Qwen-2 72B Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct).


## Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:

```py
"""<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
```

## Credits

This model has been a team effort, and the credits goes to all members of Anthracite.

We'd also like to thank [Kearm](https://twitter.com/Nottlespike) for sponsoring the compute needed to train this model.

## Training
The training was done with 55 million tokens of high-quality RP data, over 1.5 epochs. We used 8x [AMD Instinct™ MI300X Accelerators](https://www.amd.com/en/products/accelerators/instinct/mi300/mi300x.html) for the full-parameter fine-tuning of the model.

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

## Safety
...

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_alpindale__magnum-72b-v1)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |42.17|
|IFEval (0-Shot)    |76.06|
|BBH (3-Shot)       |57.65|
|MATH Lvl 5 (4-Shot)|35.27|
|GPQA (0-shot)      |18.79|
|MuSR (0-shot)      |15.62|
|MMLU-PRO (5-shot)  |49.64|


# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_anthracite-org__magnum-v1-72b)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |42.21|
|IFEval (0-Shot)    |76.06|
|BBH (3-Shot)       |57.65|
|MATH Lvl 5 (4-Shot)|35.27|
|GPQA (0-shot)      |18.79|
|MuSR (0-shot)      |15.62|
|MMLU-PRO (5-shot)  |49.85|