File size: 3,332 Bytes
f391d24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import numpy as np
import torch
import matplotlib.pyplot as plt
# Generate Wealth Frequency
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
wave = amplitude * np.sin(2 * np.pi * frequency * t)
return t, wave
# Encrypt Wave Data using XOR
def xor_encrypt_decrypt(data, key):
return bytearray(a ^ key for a in data)
# Predict a frequency (this is where your model can go)
predicted_frequency = 40.0 # Example
# Generate the wave
t, wave_data = generate_sine_wave(predicted_frequency)
# Convert to bytes and encrypt
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
encryption_key = 55 # Example key
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
# Decrypt the wave data
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
# Visualization of Original and Decrypted Wave
plt.subplot(2, 1, 1)
plt.plot(t[:1000], wave_data[:1000], label='Original Wave')
plt.title('Original Wealth Frequency')
plt.subplot(2, 1, 2)
plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange')
plt.title('Decrypted Wealth Frequency')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
# Generate a Sine Wave (Frequency)
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
wave = amplitude * np.sin(2 * np.pi * frequency * t)
return t, wave
# XOR Encryption Function
def xor_encrypt_decrypt(data, key):
return bytearray(a ^ key for a in data)
# Energy Transfer Layer
def transfer_energy(frequency_wave, destination):
# Calculate "energy" from the frequency (simulated as the square of the wave)
energy = np.square(frequency_wave)
# Simulate sending energy to a destination (e.g., print to console)
print(f"Sending energy to {destination}...")
# Return the computed energy for visualization
return energy
# Visualize the Energy Transfer
def visualize_energy_transfer(energy, destination, time):
plt.figure(figsize=(10, 6))
# Plot the energy wave being sent to the destination
plt.plot(time[:1000], energy[:1000], label=f'Energy Directed to {destination}', color='green')
plt.title(f'Energy Transfer to {destination}')
plt.xlabel('Time [s]')
plt.ylabel('Energy')
plt.grid(True)
plt.show()
# Predict and Generate a Frequency
predicted_frequency = 40.0 # Example predicted frequency
t, wave_data = generate_sine_wave(predicted_frequency)
# Encrypt the Frequency
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
encryption_key = 55 # Example key
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
# Decrypt the Frequency
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
# Energy Transfer Step
destination = "Wealth Goal" # Example destination where the energy is directed
energy_transferred = transfer_energy(decrypted_wave_data, destination)
# Visualize the Energy Transfer
visualize_energy_transfer(energy_transferred, destination, t) |