antitheft159
commited on
Upload fortunepulseypt_wealthstreamline.py
Browse files
fortunepulseypt_wealthstreamline.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""FortunePulseYPT//wealthstreamline
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Iwap73e65BQ2-bWLdvVV9ZWgU0Q1L4pE
|
8 |
+
"""
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.optim as optim
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
class WealthFrequencyPredictor(nn.Module):
|
16 |
+
def __init__(self):
|
17 |
+
super(WealthFrequencyPredictor, self).__init__()
|
18 |
+
self.fc1 = nn.Linear(10, 64) # Example input features (10)
|
19 |
+
self.fc2 = nn.Linear(64, 64) # Hidden layer
|
20 |
+
self.fc3 = nn.Linear(64, 1) # Output: 1 frequency (wealth signal)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
x = torch.relu(self.fc1(x))
|
24 |
+
x = torch.relu(self.fc2(x))
|
25 |
+
x = self.fc3(x)
|
26 |
+
return x
|
27 |
+
|
28 |
+
# Initialize the model, loss function, and optimizer
|
29 |
+
model = WealthFrequencyPredictor()
|
30 |
+
criterion = nn.MSELoss()
|
31 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
32 |
+
|
33 |
+
# Example training data (features and target frequencies)
|
34 |
+
# Simulating brainwave input data (100 samples with 10 features each)
|
35 |
+
inputs = torch.randn(100, 10)
|
36 |
+
# Simulating target brainwave frequencies between 8 and 100 Hz
|
37 |
+
targets = torch.rand(100, 1) * (100 - 8) + 8 # Frequencies between 8 and 100 Hz
|
38 |
+
|
39 |
+
dataset = torch.utils.data.TensorDataset(inputs, targets)
|
40 |
+
data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)
|
41 |
+
|
42 |
+
# Train the model
|
43 |
+
def train_model(model, data_loader, epochs=100):
|
44 |
+
for epoch in range(epochs):
|
45 |
+
for batch_inputs, batch_targets in data_loader:
|
46 |
+
optimizer.zero_grad()
|
47 |
+
outputs = model(batch_inputs)
|
48 |
+
loss = criterion(outputs, batch_targets)
|
49 |
+
loss.backward()
|
50 |
+
optimizer.step()
|
51 |
+
if (epoch + 1) % 10 == 0:
|
52 |
+
print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')
|
53 |
+
|
54 |
+
train_model(model, data_loader)
|
55 |
+
|
56 |
+
import torch
|
57 |
+
import torch.nn as nn
|
58 |
+
import torch.optim as optim
|
59 |
+
import numpy as np
|
60 |
+
import matplotlib.pyplot as plt
|
61 |
+
|
62 |
+
# 1. Define the Neural Network Model
|
63 |
+
class WealthFrequencyPredictor(nn.Module):
|
64 |
+
def __init__(self):
|
65 |
+
super(WealthFrequencyPredictor, self).__init__()
|
66 |
+
self.fc1 = nn.Linear(10, 64)
|
67 |
+
self.fc2 = nn.Linear(64, 64)
|
68 |
+
self.fc3 = nn.Linear(64, 1)
|
69 |
+
|
70 |
+
def forward(self, x):
|
71 |
+
x = torch.relu(self.fc1(x))
|
72 |
+
x = torch.relu(self.fc2(x))
|
73 |
+
x = self.fc3(x)
|
74 |
+
return x
|
75 |
+
|
76 |
+
# Initialize the model
|
77 |
+
model = WealthFrequencyPredictor()
|
78 |
+
criterion = nn.MSELoss()
|
79 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
80 |
+
|
81 |
+
# 2. Training Data
|
82 |
+
inputs = torch.randn(100, 10) # Random features
|
83 |
+
targets = torch.rand(100, 1) * (100 - 8) + 8 # Frequencies between 8 and 100 Hz
|
84 |
+
|
85 |
+
dataset = torch.utils.data.TensorDataset(inputs, targets)
|
86 |
+
data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)
|
87 |
+
|
88 |
+
# Train the model
|
89 |
+
def train_model(model, data_loader, epochs=100):
|
90 |
+
for epoch in range(epochs):
|
91 |
+
for batch_inputs, batch_targets in data_loader:
|
92 |
+
optimizer.zero_grad()
|
93 |
+
outputs = model(batch_inputs)
|
94 |
+
loss = criterion(outputs, batch_targets)
|
95 |
+
loss.backward()
|
96 |
+
optimizer.step()
|
97 |
+
if (epoch + 1) % 10 == 0:
|
98 |
+
print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')
|
99 |
+
|
100 |
+
train_model(model, data_loader)
|
101 |
+
|
102 |
+
# 3. Generate and Visualize the Predicted Wealth Frequency
|
103 |
+
|
104 |
+
# Generate a sine wave based on the predicted frequency
|
105 |
+
def generate_sine_wave(frequency, duration, amplitude=0.5, sample_rate=44100):
|
106 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
107 |
+
wave = amplitude * np.sin(2 * np.pi * frequency * t)
|
108 |
+
return t, wave
|
109 |
+
|
110 |
+
# Predict frequency and visualize it
|
111 |
+
def predict_and_visualize_wave(model, input_data):
|
112 |
+
model.eval()
|
113 |
+
with torch.no_grad():
|
114 |
+
input_tensor = torch.tensor(input_data, dtype=torch.float32)
|
115 |
+
predicted_frequency = model(input_tensor).item()
|
116 |
+
|
117 |
+
print(f'Predicted Wealth Frequency: {predicted_frequency} Hz')
|
118 |
+
|
119 |
+
# Generate sine wave
|
120 |
+
duration = 5 # 5 seconds
|
121 |
+
t, wave = generate_sine_wave(predicted_frequency, duration)
|
122 |
+
|
123 |
+
# Plot the sine wave
|
124 |
+
plt.figure(figsize=(10, 6))
|
125 |
+
plt.plot(t, wave)
|
126 |
+
plt.title(f'Sine Wave for Predicted Wealth Frequency: {predicted_frequency} Hz')
|
127 |
+
plt.xlabel('Time [s]')
|
128 |
+
plt.ylabel('Amplitude')
|
129 |
+
plt.grid(True)
|
130 |
+
plt.show()
|
131 |
+
|
132 |
+
# Example usage: Visualize the wealth frequency
|
133 |
+
input_data = np.random.rand(10) # Example input data
|
134 |
+
predict_and_visualize_wave(model, input_data)
|
135 |
+
|
136 |
+
import numpy as np
|
137 |
+
import torch
|
138 |
+
|
139 |
+
# Generate a sine wave (the data to be encrypted)
|
140 |
+
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
|
141 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
142 |
+
wave = amplitude * np.sin(2 * np.pi * frequency * t)
|
143 |
+
return wave
|
144 |
+
|
145 |
+
# Example: Generate a frequency
|
146 |
+
predicted_frequency = 40.0 # Example predicted frequency
|
147 |
+
wave_data = generate_sine_wave(predicted_frequency)
|
148 |
+
|
149 |
+
# XOR encryption function
|
150 |
+
def xor_encrypt_decrypt(data, key):
|
151 |
+
return bytearray(a ^ key for a in data)
|
152 |
+
|
153 |
+
# Convert wave data to bytes for encryption
|
154 |
+
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
|
155 |
+
|
156 |
+
# Choose a key for encryption (VPN-like key)
|
157 |
+
encryption_key = 55 # Example key
|
158 |
+
|
159 |
+
# Encrypt the wave data
|
160 |
+
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
|
161 |
+
print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')
|
162 |
+
|
163 |
+
# Decrypt the wave data using the same XOR key
|
164 |
+
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
|
165 |
+
|
166 |
+
# Convert bytes back to float array (the original wave data)
|
167 |
+
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
|
168 |
+
|
169 |
+
print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')
|
170 |
+
|
171 |
+
import numpy as np
|
172 |
+
import torch
|
173 |
+
|
174 |
+
# Generate a sine wave (the data to be encrypted)
|
175 |
+
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
|
176 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
177 |
+
wave = amplitude * np.sin(2 * np.pi * frequency * t)
|
178 |
+
return wave
|
179 |
+
|
180 |
+
# XOR encryption function
|
181 |
+
def xor_encrypt_decrypt(data, key):
|
182 |
+
return bytearray(a ^ key for a in data)
|
183 |
+
|
184 |
+
# Generate a frequency
|
185 |
+
predicted_frequency = 40.0 # Example predicted frequency
|
186 |
+
wave_data = generate_sine_wave(predicted_frequency)
|
187 |
+
|
188 |
+
# Convert wave data to bytes for encryption
|
189 |
+
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
|
190 |
+
|
191 |
+
# Encrypt the wave data
|
192 |
+
encryption_key = 55 # Example key for XOR encryption
|
193 |
+
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
|
194 |
+
print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')
|
195 |
+
|
196 |
+
# Decrypt the wave data
|
197 |
+
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
|
198 |
+
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
|
199 |
+
|
200 |
+
# Print the decrypted wave data
|
201 |
+
print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')
|
202 |
+
|
203 |
+
# Optionally: You can now store `encrypted_wave` securely in a file or database.
|
204 |
+
|
205 |
+
import numpy as np
|
206 |
+
import matplotlib.pyplot as plt
|
207 |
+
|
208 |
+
# 1. Generate a sine wave (the data to be encrypted)
|
209 |
+
def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
|
210 |
+
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
211 |
+
wave = amplitude * np.sin(2 * np.pi * frequency * t)
|
212 |
+
return t, wave
|
213 |
+
|
214 |
+
# 2. XOR encryption function
|
215 |
+
def xor_encrypt_decrypt(data, key):
|
216 |
+
return bytearray(a ^ key for a in data)
|
217 |
+
|
218 |
+
# 3. Generate a frequency wave
|
219 |
+
predicted_frequency = 40.0 # Example predicted frequency (wealth signal)
|
220 |
+
t, wave_data = generate_sine_wave(predicted_frequency)
|
221 |
+
|
222 |
+
# Convert wave data to bytes for encryption
|
223 |
+
wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
|
224 |
+
|
225 |
+
# 4. Encrypt the wave data using XOR
|
226 |
+
encryption_key = 55 # Example encryption key
|
227 |
+
encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
|
228 |
+
|
229 |
+
# 5. Decrypt the wave data
|
230 |
+
decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
|
231 |
+
|
232 |
+
# Convert bytes back to float array (the original wave data)
|
233 |
+
decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
|
234 |
+
|
235 |
+
# 6. Plotting the Original and Decrypted Waves
|
236 |
+
plt.figure(figsize=(12, 6))
|
237 |
+
|
238 |
+
# Original Wave
|
239 |
+
plt.subplot(2, 1, 1)
|
240 |
+
plt.plot(t[:1000], wave_data[:1000], label='Original Wave')
|
241 |
+
plt.title('Original Bytes')
|
242 |
+
plt.xlabel('Time [s]')
|
243 |
+
plt.ylabel('Amplitude')
|
244 |
+
plt.grid(True)
|
245 |
+
|
246 |
+
# Decrypted Wave
|
247 |
+
plt.subplot(2, 1, 2)
|
248 |
+
plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange')
|
249 |
+
plt.title('Decrypted Bytes')
|
250 |
+
plt.xlabel('Time [s]')
|
251 |
+
plt.ylabel('Amplitude')
|
252 |
+
plt.grid(True)
|
253 |
+
|
254 |
+
plt.tight_layout()
|
255 |
+
plt.show()
|