antitheft159 commited on
Commit
12a71fb
·
verified ·
1 Parent(s): f391d24

Upload fortunepulseypt_wealthstreamline.py

Browse files
Files changed (1) hide show
  1. fortunepulseypt_wealthstreamline.py +255 -0
fortunepulseypt_wealthstreamline.py ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """FortunePulseYPT//wealthstreamline
3
+
4
+ Automatically generated by Colab.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1Iwap73e65BQ2-bWLdvVV9ZWgU0Q1L4pE
8
+ """
9
+
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.optim as optim
13
+ import numpy as np
14
+
15
+ class WealthFrequencyPredictor(nn.Module):
16
+ def __init__(self):
17
+ super(WealthFrequencyPredictor, self).__init__()
18
+ self.fc1 = nn.Linear(10, 64) # Example input features (10)
19
+ self.fc2 = nn.Linear(64, 64) # Hidden layer
20
+ self.fc3 = nn.Linear(64, 1) # Output: 1 frequency (wealth signal)
21
+
22
+ def forward(self, x):
23
+ x = torch.relu(self.fc1(x))
24
+ x = torch.relu(self.fc2(x))
25
+ x = self.fc3(x)
26
+ return x
27
+
28
+ # Initialize the model, loss function, and optimizer
29
+ model = WealthFrequencyPredictor()
30
+ criterion = nn.MSELoss()
31
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
32
+
33
+ # Example training data (features and target frequencies)
34
+ # Simulating brainwave input data (100 samples with 10 features each)
35
+ inputs = torch.randn(100, 10)
36
+ # Simulating target brainwave frequencies between 8 and 100 Hz
37
+ targets = torch.rand(100, 1) * (100 - 8) + 8 # Frequencies between 8 and 100 Hz
38
+
39
+ dataset = torch.utils.data.TensorDataset(inputs, targets)
40
+ data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)
41
+
42
+ # Train the model
43
+ def train_model(model, data_loader, epochs=100):
44
+ for epoch in range(epochs):
45
+ for batch_inputs, batch_targets in data_loader:
46
+ optimizer.zero_grad()
47
+ outputs = model(batch_inputs)
48
+ loss = criterion(outputs, batch_targets)
49
+ loss.backward()
50
+ optimizer.step()
51
+ if (epoch + 1) % 10 == 0:
52
+ print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')
53
+
54
+ train_model(model, data_loader)
55
+
56
+ import torch
57
+ import torch.nn as nn
58
+ import torch.optim as optim
59
+ import numpy as np
60
+ import matplotlib.pyplot as plt
61
+
62
+ # 1. Define the Neural Network Model
63
+ class WealthFrequencyPredictor(nn.Module):
64
+ def __init__(self):
65
+ super(WealthFrequencyPredictor, self).__init__()
66
+ self.fc1 = nn.Linear(10, 64)
67
+ self.fc2 = nn.Linear(64, 64)
68
+ self.fc3 = nn.Linear(64, 1)
69
+
70
+ def forward(self, x):
71
+ x = torch.relu(self.fc1(x))
72
+ x = torch.relu(self.fc2(x))
73
+ x = self.fc3(x)
74
+ return x
75
+
76
+ # Initialize the model
77
+ model = WealthFrequencyPredictor()
78
+ criterion = nn.MSELoss()
79
+ optimizer = optim.Adam(model.parameters(), lr=0.001)
80
+
81
+ # 2. Training Data
82
+ inputs = torch.randn(100, 10) # Random features
83
+ targets = torch.rand(100, 1) * (100 - 8) + 8 # Frequencies between 8 and 100 Hz
84
+
85
+ dataset = torch.utils.data.TensorDataset(inputs, targets)
86
+ data_loader = torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True)
87
+
88
+ # Train the model
89
+ def train_model(model, data_loader, epochs=100):
90
+ for epoch in range(epochs):
91
+ for batch_inputs, batch_targets in data_loader:
92
+ optimizer.zero_grad()
93
+ outputs = model(batch_inputs)
94
+ loss = criterion(outputs, batch_targets)
95
+ loss.backward()
96
+ optimizer.step()
97
+ if (epoch + 1) % 10 == 0:
98
+ print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')
99
+
100
+ train_model(model, data_loader)
101
+
102
+ # 3. Generate and Visualize the Predicted Wealth Frequency
103
+
104
+ # Generate a sine wave based on the predicted frequency
105
+ def generate_sine_wave(frequency, duration, amplitude=0.5, sample_rate=44100):
106
+ t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
107
+ wave = amplitude * np.sin(2 * np.pi * frequency * t)
108
+ return t, wave
109
+
110
+ # Predict frequency and visualize it
111
+ def predict_and_visualize_wave(model, input_data):
112
+ model.eval()
113
+ with torch.no_grad():
114
+ input_tensor = torch.tensor(input_data, dtype=torch.float32)
115
+ predicted_frequency = model(input_tensor).item()
116
+
117
+ print(f'Predicted Wealth Frequency: {predicted_frequency} Hz')
118
+
119
+ # Generate sine wave
120
+ duration = 5 # 5 seconds
121
+ t, wave = generate_sine_wave(predicted_frequency, duration)
122
+
123
+ # Plot the sine wave
124
+ plt.figure(figsize=(10, 6))
125
+ plt.plot(t, wave)
126
+ plt.title(f'Sine Wave for Predicted Wealth Frequency: {predicted_frequency} Hz')
127
+ plt.xlabel('Time [s]')
128
+ plt.ylabel('Amplitude')
129
+ plt.grid(True)
130
+ plt.show()
131
+
132
+ # Example usage: Visualize the wealth frequency
133
+ input_data = np.random.rand(10) # Example input data
134
+ predict_and_visualize_wave(model, input_data)
135
+
136
+ import numpy as np
137
+ import torch
138
+
139
+ # Generate a sine wave (the data to be encrypted)
140
+ def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
141
+ t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
142
+ wave = amplitude * np.sin(2 * np.pi * frequency * t)
143
+ return wave
144
+
145
+ # Example: Generate a frequency
146
+ predicted_frequency = 40.0 # Example predicted frequency
147
+ wave_data = generate_sine_wave(predicted_frequency)
148
+
149
+ # XOR encryption function
150
+ def xor_encrypt_decrypt(data, key):
151
+ return bytearray(a ^ key for a in data)
152
+
153
+ # Convert wave data to bytes for encryption
154
+ wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
155
+
156
+ # Choose a key for encryption (VPN-like key)
157
+ encryption_key = 55 # Example key
158
+
159
+ # Encrypt the wave data
160
+ encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
161
+ print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')
162
+
163
+ # Decrypt the wave data using the same XOR key
164
+ decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
165
+
166
+ # Convert bytes back to float array (the original wave data)
167
+ decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
168
+
169
+ print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')
170
+
171
+ import numpy as np
172
+ import torch
173
+
174
+ # Generate a sine wave (the data to be encrypted)
175
+ def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
176
+ t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
177
+ wave = amplitude * np.sin(2 * np.pi * frequency * t)
178
+ return wave
179
+
180
+ # XOR encryption function
181
+ def xor_encrypt_decrypt(data, key):
182
+ return bytearray(a ^ key for a in data)
183
+
184
+ # Generate a frequency
185
+ predicted_frequency = 40.0 # Example predicted frequency
186
+ wave_data = generate_sine_wave(predicted_frequency)
187
+
188
+ # Convert wave data to bytes for encryption
189
+ wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
190
+
191
+ # Encrypt the wave data
192
+ encryption_key = 55 # Example key for XOR encryption
193
+ encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
194
+ print(f'Encrypted Wave (first 100 bytes): {encrypted_wave[:100]}')
195
+
196
+ # Decrypt the wave data
197
+ decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
198
+ decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
199
+
200
+ # Print the decrypted wave data
201
+ print(f'Decrypted Wave (first 10 samples): {decrypted_wave_data[:10]}')
202
+
203
+ # Optionally: You can now store `encrypted_wave` securely in a file or database.
204
+
205
+ import numpy as np
206
+ import matplotlib.pyplot as plt
207
+
208
+ # 1. Generate a sine wave (the data to be encrypted)
209
+ def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100):
210
+ t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
211
+ wave = amplitude * np.sin(2 * np.pi * frequency * t)
212
+ return t, wave
213
+
214
+ # 2. XOR encryption function
215
+ def xor_encrypt_decrypt(data, key):
216
+ return bytearray(a ^ key for a in data)
217
+
218
+ # 3. Generate a frequency wave
219
+ predicted_frequency = 40.0 # Example predicted frequency (wealth signal)
220
+ t, wave_data = generate_sine_wave(predicted_frequency)
221
+
222
+ # Convert wave data to bytes for encryption
223
+ wave_data_bytes = bytearray(np.float32(wave_data).tobytes())
224
+
225
+ # 4. Encrypt the wave data using XOR
226
+ encryption_key = 55 # Example encryption key
227
+ encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key)
228
+
229
+ # 5. Decrypt the wave data
230
+ decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key)
231
+
232
+ # Convert bytes back to float array (the original wave data)
233
+ decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32)
234
+
235
+ # 6. Plotting the Original and Decrypted Waves
236
+ plt.figure(figsize=(12, 6))
237
+
238
+ # Original Wave
239
+ plt.subplot(2, 1, 1)
240
+ plt.plot(t[:1000], wave_data[:1000], label='Original Wave')
241
+ plt.title('Original Bytes')
242
+ plt.xlabel('Time [s]')
243
+ plt.ylabel('Amplitude')
244
+ plt.grid(True)
245
+
246
+ # Decrypted Wave
247
+ plt.subplot(2, 1, 2)
248
+ plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange')
249
+ plt.title('Decrypted Bytes')
250
+ plt.xlabel('Time [s]')
251
+ plt.ylabel('Amplitude')
252
+ plt.grid(True)
253
+
254
+ plt.tight_layout()
255
+ plt.show()