import numpy as np import torch import matplotlib.pyplot as plt # Generate Wealth Frequency def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100): t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) wave = amplitude * np.sin(2 * np.pi * frequency * t) return t, wave # Encrypt Wave Data using XOR def xor_encrypt_decrypt(data, key): return bytearray(a ^ key for a in data) # Predict a frequency (this is where your model can go) predicted_frequency = 40.0 # Example # Generate the wave t, wave_data = generate_sine_wave(predicted_frequency) # Convert to bytes and encrypt wave_data_bytes = bytearray(np.float32(wave_data).tobytes()) encryption_key = 55 # Example key encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key) # Decrypt the wave data decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key) decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32) # Visualization of Original and Decrypted Wave plt.subplot(2, 1, 1) plt.plot(t[:1000], wave_data[:1000], label='Original Wave') plt.title('Original Wealth Frequency') plt.subplot(2, 1, 2) plt.plot(t[:1000], decrypted_wave_data[:1000], label='Decrypted Wave', color='orange') plt.title('Decrypted Wealth Frequency') plt.show() import numpy as np import matplotlib.pyplot as plt # Generate a Sine Wave (Frequency) def generate_sine_wave(frequency, duration=5, amplitude=0.5, sample_rate=44100): t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False) wave = amplitude * np.sin(2 * np.pi * frequency * t) return t, wave # XOR Encryption Function def xor_encrypt_decrypt(data, key): return bytearray(a ^ key for a in data) # Energy Transfer Layer def transfer_energy(frequency_wave, destination): # Calculate "energy" from the frequency (simulated as the square of the wave) energy = np.square(frequency_wave) # Simulate sending energy to a destination (e.g., print to console) print(f"Sending energy to {destination}...") # Return the computed energy for visualization return energy # Visualize the Energy Transfer def visualize_energy_transfer(energy, destination, time): plt.figure(figsize=(10, 6)) # Plot the energy wave being sent to the destination plt.plot(time[:1000], energy[:1000], label=f'Energy Directed to {destination}', color='green') plt.title(f'Energy Transfer to {destination}') plt.xlabel('Time [s]') plt.ylabel('Energy') plt.grid(True) plt.show() # Predict and Generate a Frequency predicted_frequency = 40.0 # Example predicted frequency t, wave_data = generate_sine_wave(predicted_frequency) # Encrypt the Frequency wave_data_bytes = bytearray(np.float32(wave_data).tobytes()) encryption_key = 55 # Example key encrypted_wave = xor_encrypt_decrypt(wave_data_bytes, encryption_key) # Decrypt the Frequency decrypted_wave_bytes = xor_encrypt_decrypt(encrypted_wave, encryption_key) decrypted_wave_data = np.frombuffer(decrypted_wave_bytes, dtype=np.float32) # Energy Transfer Step destination = "Wealth Goal" # Example destination where the energy is directed energy_transferred = transfer_energy(decrypted_wave_data, destination) # Visualize the Energy Transfer visualize_energy_transfer(energy_transferred, destination, t)