File size: 3,700 Bytes
3b3e339 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
# Parameters
num_nodes = 10000
hours = 24
samples_per_hour = 60 # Sampling points per hour (e.g., one sample per minute)
time_steps = hours * samples_per_hour
wave_frequency = 1 / 24 # Frequency to represent a 24-hour cycle
wave_amplitude = 1.0
infrared_amplitude = 0.5 # Constant amplitude for even distribution
brainwave_frequency = 10 / 3600 # Simulating a 10 Hz brainwave over hours (scaled)
brainwave_amplitude = 0.3
random_opportunity_scale = 0.8 # Scaling factor for random wealth opportunities
encryption_key = 0.5 # Encryption key for simulating protection
# Define the PyTorch model with VPN-like frequency
class WealthSignalVPNModel(nn.Module):
def __init__(self):
super(WealthSignalVPNModel, self).__init__()
self.num_nodes = num_nodes
self.time_steps = time_steps
self.encryption_key = encryption_key
def forward(self, time_tensor):
# Initialize the combined signals tensor
combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32)
for i in range(self.num_nodes):
# Wealth signal with a phase shift for each node
wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes))
# Random wealth opportunities
random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps)
# Constant infrared energy signal
infrared_signal = infrared_amplitude * torch.ones(self.time_steps)
# Perfect brainwave pattern (alpha waves)
brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor)
# Combine signals for each node
combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal
# Combine all signals (simulating dense waveform)
overall_signal = torch.mean(combined_signals, dim=0)
# Apply VPN-like encryption (scramble signal)
encrypted_signal = torch.sin(overall_signal * self.encryption_key) # A simple scrambling function
return encrypted_signal, overall_signal # Return both encrypted and original signals for validation
# Create a time tensor
time_tensor = torch.linspace(0, hours, time_steps)
# Initialize and run the model
vpn_model = WealthSignalVPNModel()
encrypted_signal, original_signal = vpn_model(time_tensor)
# Convert the signals to numpy for plotting
encrypted_signal_np = encrypted_signal.detach().numpy()
original_signal_np = original_signal.detach().numpy()
# Reshape the signals for 2D visualization (e.g., hours x samples_per_hour)
encrypted_signal_reshaped = encrypted_signal_np.reshape((samples_per_hour, hours))
original_signal_reshaped = original_signal_np.reshape((samples_per_hour, hours))
# Plot the resulting color maps
fig, axs = plt.subplots(2, 1, figsize=(15, 12))
# Original Signal Plot
cax1 = axs[0].imshow(original_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')
axs[0].set_title('Original Signal Visualization')
axs[0].set_xlabel('Time (Hours)')
axs[0].set_ylabel('Sample Points Per Hour')
fig.colorbar(cax1, ax=axs[0], orientation='vertical', label='Amplitude')
# Encrypted Signal Plot
cax2 = axs[1].imshow(encrypted_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')
axs[1].set_title('Encrypted Signal Visualization')
axs[1].set_xlabel('Time (Hours)')
axs[1].set_ylabel('Sample Points Per Hour')
fig.colorbar(cax2, ax=axs[1], orientation='vertical', label='Amplitude')
plt.tight_layout()
plt.show() |