diff --git "a/infraredsecure-wealthstream.ipynb" "b/infraredsecure-wealthstream.ipynb" deleted file mode 100644--- "a/infraredsecure-wealthstream.ipynb" +++ /dev/null @@ -1 +0,0 @@ -{"metadata":{"kernelspec":{"language":"python","display_name":"Python 3","name":"python3"},"language_info":{"name":"python","version":"3.10.14","mimetype":"text/x-python","codemirror_mode":{"name":"ipython","version":3},"pygments_lexer":"ipython3","nbconvert_exporter":"python","file_extension":".py"},"kaggle":{"accelerator":"none","dataSources":[],"dockerImageVersionId":30761,"isInternetEnabled":true,"language":"python","sourceType":"notebook","isGpuEnabled":false}},"nbformat_minor":4,"nbformat":4,"cells":[{"cell_type":"code","source":"import torch\nimport torch.nn as nn\nimport numpy as np\nfrom cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes\nfrom cryptography.hazmat.backends import default_backend\n\n# Parameters\nnum_nodes = 100\ntime_steps = 1440 # Number of time steps in 24 hours (e.g., one per minute)\nwave_frequency = 1 / 24 # Frequency for a 24-hour cycle\nwave_amplitude = 1.0\ninfrared_amplitude = 0.5 # Constant amplitude for infrared energy\nencryption_key = b'sixteenbytekey123' # 16-byte AES encryption key\niv = b'initialvector1234' # 16-byte initialization vector\n\n# AES encryption function\ndef aes_encrypt(plain_text):\n backend = default_backend()\n cipher = Cipher(algorithms.AES(encryption_key), modes.CFB(iv), backend=backend)\n encryptor = cipher.encryptor()\n return encryptor.update(plain_text) + encryptor.finalize()\n\n# AES decryption function\ndef aes_decrypt(cipher_text):\n backend = default_backend()\n cipher = Cipher(algorithms.AES(encryption_key), modes.CFB(iv), backend=backend)\n decryptor = cipher.decryptor()\n return decryptor.update(cipher_text) + decryptor.finalize()\n\n# Define the PyTorch model for wealth data transmission\nclass WealthSignalTransmitter(nn.Module):\n def __init__(self):\n super(WealthSignalTransmitter, self).__init__()\n self.num_nodes = num_nodes\n self.time_steps = time_steps\n\n def forward(self, time_tensor):\n # Initialize the combined signals tensor\n combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32)\n\n for i in range(self.num_nodes):\n # Wealth signal with a phase shift for each node\n wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes))\n # Constant infrared energy signal\n infrared_signal = infrared_amplitude * torch.ones(self.time_steps)\n # Combine signals for each node\n combined_signals[i] = wealth_signal + infrared_signal\n\n # Combine all signals to get the overall transmitted signal\n overall_signal = torch.mean(combined_signals, dim=0)\n\n # Encrypt the signal using AES\n signal_bytes = overall_signal.numpy().tobytes()\n encrypted_signal_bytes = aes_encrypt(signal_bytes)\n\n return encrypted_signal_bytes\n\n# Create a time tensor\ntime_tensor = torch.linspace(0, 24, time_steps)\n\n# Initialize the transmitter\ntransmitter = WealthSignalTransmitter()\n\n# Transmit and store the encrypted data\nencrypted_data = transmitter(time_tensor)\n\n# Simulate storing the encrypted data (e.g., in memory or file)\nstored_data = encrypted_data\n\n# Decrypt the data for retrieval\ndecrypted_data_bytes = aes_decrypt(stored_data)\ndecrypted_signal_np = np.frombuffer(decrypted_data_bytes, dtype=np.float32)\n\n# Display the decrypted signal\nprint(\"Decrypted Signal:\")\nprint(decrypted_signal_np)","metadata":{"execution":{"iopub.status.busy":"2024-09-16T20:30:40.417782Z","iopub.execute_input":"2024-09-16T20:30:40.418730Z","iopub.status.idle":"2024-09-16T20:30:44.667326Z","shell.execute_reply.started":"2024-09-16T20:30:40.418683Z","shell.execute_reply":"2024-09-16T20:30:44.665483Z"},"trusted":true},"execution_count":1,"outputs":[{"traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)","Cell \u001b[0;32mIn[1], line 65\u001b[0m\n\u001b[1;32m 62\u001b[0m transmitter \u001b[38;5;241m=\u001b[39m WealthSignalTransmitter()\n\u001b[1;32m 64\u001b[0m \u001b[38;5;66;03m# Transmit and store the encrypted data\u001b[39;00m\n\u001b[0;32m---> 65\u001b[0m encrypted_data \u001b[38;5;241m=\u001b[39m \u001b[43mtransmitter\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtime_tensor\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;66;03m# Simulate storing the encrypted data (e.g., in memory or file)\u001b[39;00m\n\u001b[1;32m 68\u001b[0m stored_data \u001b[38;5;241m=\u001b[39m encrypted_data\n","File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1561\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1565\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n","Cell \u001b[0;32mIn[1], line 54\u001b[0m, in \u001b[0;36mWealthSignalTransmitter.forward\u001b[0;34m(self, time_tensor)\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[38;5;66;03m# Encrypt the signal using AES\u001b[39;00m\n\u001b[1;32m 53\u001b[0m signal_bytes \u001b[38;5;241m=\u001b[39m overall_signal\u001b[38;5;241m.\u001b[39mnumpy()\u001b[38;5;241m.\u001b[39mtobytes()\n\u001b[0;32m---> 54\u001b[0m encrypted_signal_bytes \u001b[38;5;241m=\u001b[39m \u001b[43maes_encrypt\u001b[49m\u001b[43m(\u001b[49m\u001b[43msignal_bytes\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 56\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m encrypted_signal_bytes\n","Cell \u001b[0;32mIn[1], line 19\u001b[0m, in \u001b[0;36maes_encrypt\u001b[0;34m(plain_text)\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21maes_encrypt\u001b[39m(plain_text):\n\u001b[1;32m 18\u001b[0m backend \u001b[38;5;241m=\u001b[39m default_backend()\n\u001b[0;32m---> 19\u001b[0m cipher \u001b[38;5;241m=\u001b[39m Cipher(\u001b[43malgorithms\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mAES\u001b[49m\u001b[43m(\u001b[49m\u001b[43mencryption_key\u001b[49m\u001b[43m)\u001b[49m, modes\u001b[38;5;241m.\u001b[39mCFB(iv), backend\u001b[38;5;241m=\u001b[39mbackend)\n\u001b[1;32m 20\u001b[0m encryptor \u001b[38;5;241m=\u001b[39m cipher\u001b[38;5;241m.\u001b[39mencryptor()\n\u001b[1;32m 21\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m encryptor\u001b[38;5;241m.\u001b[39mupdate(plain_text) \u001b[38;5;241m+\u001b[39m encryptor\u001b[38;5;241m.\u001b[39mfinalize()\n","File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/cryptography/hazmat/primitives/ciphers/algorithms.py:33\u001b[0m, in \u001b[0;36mAES.__init__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 32\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m__init__\u001b[39m(\u001b[38;5;28mself\u001b[39m, key: \u001b[38;5;28mbytes\u001b[39m):\n\u001b[0;32m---> 33\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkey \u001b[38;5;241m=\u001b[39m \u001b[43m_verify_key_size\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n","File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/cryptography/hazmat/primitives/ciphers/algorithms.py:20\u001b[0m, in \u001b[0;36m_verify_key_size\u001b[0;34m(algorithm, key)\u001b[0m\n\u001b[1;32m 18\u001b[0m \u001b[38;5;66;03m# Verify that the key size matches the expected key size\u001b[39;00m\n\u001b[1;32m 19\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(key) \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m8\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m algorithm\u001b[38;5;241m.\u001b[39mkey_sizes:\n\u001b[0;32m---> 20\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 21\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mInvalid key size (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(key)\u001b[38;5;250m \u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;250m \u001b[39m\u001b[38;5;241m8\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m) for \u001b[39m\u001b[38;5;132;01m{\u001b[39;00malgorithm\u001b[38;5;241m.\u001b[39mname\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 22\u001b[0m )\n\u001b[1;32m 23\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m key\n","\u001b[0;31mValueError\u001b[0m: Invalid key size (136) for AES."],"ename":"ValueError","evalue":"Invalid key size (136) for AES.","output_type":"error"}]},{"cell_type":"code","source":"import torch\nimport torch.nn as nn\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Parameters\nnum_nodes = 10000\nhours = 24\nsamples_per_hour = 60 # Sampling points per hour (e.g., one sample per minute)\ntime_steps = hours * samples_per_hour\nwave_frequency = 1 / 24 # Frequency to represent a 24-hour cycle\nwave_amplitude = 1.0\ninfrared_amplitude = 0.5 # Constant amplitude for even distribution\nbrainwave_frequency = 10 / 3600 # Simulating a 10 Hz brainwave over hours (scaled)\nbrainwave_amplitude = 0.3\nsampling_rate = 1 / samples_per_hour # Sampling rate (samples per hour)\nrandom_opportunity_scale = 0.8 # Scaling factor for random wealth opportunities\nencryption_key = 0.5 # Encryption key for simulating protection\n\n# Define the PyTorch model with VPN-like frequency\nclass WealthSignalVPNModel(nn.Module):\n def __init__(self):\n super(WealthSignalVPNModel, self).__init__()\n self.num_nodes = num_nodes\n self.time_steps = time_steps\n self.encryption_key = encryption_key\n\n def forward(self, time_tensor):\n # Initialize the combined signals tensor\n combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32)\n\n for i in range(self.num_nodes):\n # Wealth signal with a phase shift for each node\n wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes))\n # Random wealth opportunities\n random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps)\n # Constant infrared energy signal\n infrared_signal = infrared_amplitude * torch.ones(self.time_steps)\n # Perfect brainwave pattern (alpha waves)\n brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor)\n # Combine signals for each node\n combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal\n\n # Combine all signals (simulating dense waveform)\n overall_signal = torch.mean(combined_signals, dim=0)\n\n # Apply VPN-like encryption (scramble signal)\n encrypted_signal = torch.sin(overall_signal * self.encryption_key) # A simple scrambling function\n\n return encrypted_signal, overall_signal # Return both encrypted and original signals for validation\n\n# Create a time tensor\ntime_tensor = torch.linspace(0, hours, time_steps)\n\n# Initialize and run the model\nvpn_model = WealthSignalVPNModel()\nencrypted_signal, original_signal = vpn_model(time_tensor)\n\n# Convert the signals to numpy for plotting\nencrypted_signal_np = encrypted_signal.detach().numpy()\noriginal_signal_np = original_signal.detach().numpy()\n\n# System checks for validation\ndef validate_signals(encrypted, original):\n # Check for the range of the encrypted signal\n if not (np.all(encrypted >= -1) and np.all(encrypted <= 1)):\n print(\"Error: Encrypted signal out of range\")\n else:\n print(\"Encrypted signal range check passed\")\n\n # Check if the decryption can correctly reconstruct the original signal\n # Here we simulate the 'decryption' step by applying the inverse function\n decrypted_signal = np.arcsin(encrypted) / encryption_key\n\n if np.allclose(decrypted_signal, original, atol=0.1):\n print(\"Decryption validation passed\")\n else:\n print(\"Decryption validation failed\")\n\n# Validate the signals\nvalidate_signals(encrypted_signal_np, original_signal_np)\n\n# Plot the resulting encrypted signal\nplt.figure(figsize=(15, 6))\nplt.plot(np.linspace(0, hours, time_steps), encrypted_signal_np, color='green', alpha=0.7)\nplt.title('Encrypted Signal with VPN-like Frequency Protection using PyTorch')\nplt.xlabel('Time (Hours)')\nplt.ylabel('Amplitude')\nplt.grid(True)\nplt.xticks(np.arange(0, 25, step=1)) # Set x-axis to show hours\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2024-09-16T20:35:12.722656Z","iopub.execute_input":"2024-09-16T20:35:12.723103Z","iopub.status.idle":"2024-09-16T20:35:14.430764Z","shell.execute_reply.started":"2024-09-16T20:35:12.723062Z","shell.execute_reply":"2024-09-16T20:35:14.429617Z"},"trusted":true},"execution_count":2,"outputs":[{"name":"stdout","text":"Encrypted signal range check passed\nDecryption validation passed\n","output_type":"stream"},{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAABNoAAAIjCAYAAADVxnahAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1f4G8HdbKkkoCS30XgRDVzpKV6+oiGIBQWxYf1jRK8WG4rVcGyoqIoIFrFwQpBdBQHrvvSWUFFK3zO+PMJMzszO7s5vdBML7eZ773OyUM2dmN6t5/Z5zLJIkSSAiIiIiIiIiIqJisZZ2B4iIiIiIiIiIiMoCBm1EREREREREREQhwKCNiIiIiIiIiIgoBBi0ERERERERERERhQCDNiIiIiIiIiIiohBg0EZERERERERERBQCDNqIiIiIiIiIiIhCgEEbERERERERERFRCDBoIyIiIiIiIiIiCgEGbURERBrjxo2DxWIJWXuHDh2CxWLB119/HbI2i+Prr7+GxWLBoUOHwtJ+nTp1cN9995k+9sYbbwxLP0qb3vuu99myWCx47LHHSrh3RMUT7u+RknLfffehTp06pd2NMqN79+646qqrSrsbRESlikEbEVEZJP8BZPS/v//+u7S7WGwnTpzAuHHjsGnTplLtx+zZs9GtWzdUrlwZMTExqFevHgYNGoR58+aVar8uJTt27MC4ceNC+gf5zz//DIvFgi+++MLwmAULFsBiseCDDz4AUPgHtfh7EB8fj6uvvhrvvPMO8vPzlfPkMKxKlSrIycnxavdyCweXLl1q+F1w5513lnb3yhTts3Y4HKhXrx6GDBmCAwcOhPRan3zySYmE92+88QZ+/fXXsF/nStS9e3fV56VixYpo164dvvrqK3g8HtPt+Ptnvvw/BopERCXDXtodICKi8HnllVdQt25dr+0NGjQohd6E1okTJzB+/HjUqVMHKSkppdKH//znP3j22WfRrVs3jB49GjExMdi3bx8WLlyI77//Hn379gUA1K5dG7m5uXA4HKXSz5K2e/duWK1F/y1vx44dGD9+PLp37x6yP/RuuOEGJCQkYMaMGRgxYoTuMTNmzIDNZlOFSZGRkUo4l56ejp9++gnPPPMM1q1bh++//151fmpqKiZNmoSnn346JH0GgH//+9944YUXQtZeIJ544gm0a9dOtY1/eIeH/KydTic2bNiAzz//HHPmzMHWrVtRvXr1kFzjk08+QWJiounq0WC98cYbGDhwIAYMGKDafu+99+LOO+9EZGRkWK8fbpMnTw4o1Aq1GjVqYMKECQCAtLQ0fPPNN7j//vuxZ88evPnmm6ba6Nq1K6ZNm6baNmLECLRv3x4PPvigsq1cuXKh6zgRERli0EZEVIb169cPbdu2LdU+ZGdnIzY2tlT7EA4ulwuvvvoqevXqhT///NNrf2pqqvKzxWJBVFRUSXavVJXEH96RkZEYOHAgpkyZghMnTniFF3l5efjll1/Qq1cvVK5cWdlut9txzz33KK9HjhyJDh064IcffsC7776raiclJQVvv/02Ro4ciejo6JD02263w24vnX/96tKlCwYOHGjqWJfLBY/Hg4iIiDD3qmwSn/WwYcPQqFEjPPHEE5g6dSpGjx6te87l9l1ps9lgs9lKuxvFVtr/ASQhIUH1nfTQQw+hcePG+Oijj/Dqq6+a6l+9evVQr1491baHH34Y9erVU7UdrMvts0lEVNo4dJSI6AomzyH1n//8B59//jnq16+PyMhItGvXDuvWrfM6fteuXRg0aBCSkpIQHR2Nxo0b46WXXlL2y0PuduzYgbvuugsVKlRA586dMWXKFFgsFmzcuNGrzTfeeAM2mw3Hjx8HUDS/y/r169GxY0dER0ejbt26+PTTT5Vzli5dqlTmDBs2TBkWIw6jWrNmDfr27YuEhATExMSgW7du+Ouvv7yuv3LlSrRr1w5RUVGoX78+PvvsM1PP7syZM8jMzESnTp1094vhjtEcbTNnzkSzZs0QFRWFq666Cr/88ovXfEGBvEdbtmzBfffdh3r16iEqKgpVq1bF8OHDcfbsWVP3JPr9999hsViwZcsWZdtPP/0Ei8WCW2+9VXVs06ZNcccddyivxTnavv76a9x+++0AgB49eijv1dKlS1VtrFy5Eu3bt0dUVBTq1auHb775xm8f77nnHng8Hq9KNACYM2cOMjIycPfdd/tsw2q1onv37gDgNbR1zJgxOH36NCZNmuS3L2aZnf/vtddeg9VqxYcffqhs++OPP9ClSxfExsYiLi4ON9xwA7Zv317sPomfsffff1/5jO3YsQNA4e/9wIEDUbFiRURFRaFt27b4/fffvdrZvn07rrvuOkRHR6NGjRp47bXX8NVXX3nN42WxWDBu3Div8/Xm9ktPT8dTTz2FmjVrIjIyEg0aNMBbb72lqkAK5ffYkiVLYLFY8Msvv3idN2PGDFgsFqxevdrMY1W57rrrAAAHDx4EYPxdCRSF+PJ91KlTBy+++KJqeHOdOnWwfft2LFu2TPmdkj/HZp8bAHg8Hvz3v/9FixYtEBUVhaSkJPTt2xf//PMPgML3Kjs7G1OnTlWuI/5u683R9sknn6B58+aIjIxE9erV8eijjyI9PV11jPw9v2PHDvTo0QMxMTFITk7GxIkT/T5LX3Neaj9bWVlZeOqpp1CnTh1ERkaicuXK6NWrFzZs2KAcU5zvXMDc93ggYmJicM011yA7OxtpaWkYO3YsHA4H0tLSvI598MEHUb58eeTl5Zlqe+PGjejXrx/i4+NRrlw5XH/99V5TScjv67JlyzBy5EhUrlwZNWrUUPb/8ccf6NatG+Li4hAfH4927dphxowZXtcK5r0lIiorWNFGRFSGZWRk4MyZM6ptFosFlSpVUm2bMWMGsrKy8NBDD8FisWDixIm49dZbceDAAeW/pm/ZsgVdunSBw+HAgw8+iDp16mD//v2YPXs2Xn/9dVV7t99+Oxo2bIg33ngDkiRh4MCBePTRRzF9+nS0atVKdez06dPRvXt3JCcnK9vOnz+P/v37Y9CgQRg8eDB+/PFHPPLII4iIiMDw4cPRtGlTvPLKKxgzZgwefPBBdOnSBQDQsWNHAMDixYvRr18/tGnTBmPHjoXVasWUKVNw3XXXYcWKFWjfvj0AYOvWrejduzeSkpIwbtw4uFwujB07FlWqVPH7bCtXrozo6GjMnj0bjz/+OCpWrGjmLVHMmTMHd9xxB1q0aIEJEybg/PnzuP/++1XPQWTmPVqwYAEOHDiAYcOGoWrVqti+fTs+//xzbN++HX///XdACzx07twZFosFy5cvR8uWLQEAK1asgNVqxcqVK5Xj0tLSsGvXLsPJ/Lt27YonnngCH3zwAV588UU0bdoUAJT/B4B9+/Zh4MCBuP/++zF06FB89dVXuO+++9CmTRs0b97csI9du3ZFjRo1MGPGDIwaNcrrecXExHgNd9Ozf/9+APD6vejSpQuuu+46TJw4EY888kjIqtr8+fe//4033ngDn332GR544AEAwLRp0zB06FD06dMHb731FnJycjBp0iR07twZGzduNPVHfVZWltf3gfi5nTJlCvLy8vDggw8iMjISFStWxPbt29GpUyckJyfjhRdeQGxsLH788UcMGDAAP/30E2655RYAwKlTp9CjRw+4XC7luM8//7xYzywnJwfdunXD8ePH8dBDD6FWrVpYtWoVRo8ejZMnT+L9999XHR+K77Hu3bujZs2amD59unJvsunTp6N+/fq49tprA74Xo8+Y9rsSKBzyN3XqVAwcOBBPP/001qxZgwkTJmDnzp1KAPj+++/j8ccfR7ly5ZSQUP7eCuS53X///fj666/Rr18/jBgxAi6XCytWrMDff/+Ntm3bYtq0aV5DEOvXr294n+PGjcP48ePRs2dPPPLII9i9ezcmTZqEdevW4a+//lJVZ50/fx59+/bFrbfeikGDBmHWrFl4/vnn0aJFC/Tr1y/gZ6zn4YcfxqxZs/DYY4+hWbNmOHv2LFauXImdO3eidevWPs8183kK9HvcrAMHDsBms6F8+fK499578corr+CHH35Qfc8WFBRg1qxZuO2220xVTG/fvh1dunRBfHw8nnvuOTgcDnz22Wfo3r07li1bhg4dOqiOHzlyJJKSkjBmzBhkZ2cDKAzhhg8fjubNm2P06NEoX748Nm7ciHnz5uGuu+5Szi2J95aI6JImERFRmTNlyhQJgO7/IiMjleMOHjwoAZAqVaoknTt3Ttn+22+/SQCk2bNnK9u6du0qxcXFSYcPH1Zdy+PxKD+PHTtWAiANHjzYq0+DBw+WqlevLrndbmXbhg0bJADSlClTlG3dunWTAEjvvPOOsi0/P19KSUmRKleuLBUUFEiSJEnr1q3zOlfuT8OGDaU+ffqo+paTkyPVrVtX6tWrl7JtwIABUlRUlOqeduzYIdlsNsnMPyLHjBkjAZBiY2Olfv36Sa+//rq0fv16r+Pk5yz2tUWLFlKNGjWkrKwsZdvSpUslAFLt2rW9zjXzHuXk5Hhd+7vvvpMASMuXL1e2yZ+PgwcP+ry/5s2bS4MGDVJet27dWrr99tslANLOnTslSZKkn3/+WQIgbd68WTmudu3a0tChQ5XXM2fOlABIS5Ys8bpG7dq1vfqXmpoqRUZGSk8//bTP/kmSJD377LMSAGn37t3KtoyMDCkqKsrrczh06FApNjZWSktLk9LS0qR9+/ZJb7zxhmSxWKSWLVsqx8mf47S0NGnZsmUSAOndd99V9fmGG27w2ze9911uWwRAevTRRyVJkqSnn35aslqt0tdff63sz8rKksqXLy898MADqvNOnTolJSQkeG3XWrJkieH3wcGDB5V+xsfHS6mpqapzr7/+eqlFixZSXl6ess3j8UgdO3aUGjZsqGx76qmnJADSmjVrlG2pqalSQkKC12cNgDR27Fivfmo/N6+++qoUGxsr7dmzR3XcCy+8INlsNunIkSOSJIX+e2z06NFSZGSklJ6erroXu92u22+R/Ky/+uorKS0tTTpx4oQ0Z84cqU6dOpLFYpHWrVsnSZLxd+WmTZskANKIESNU25955hkJgLR48WJlW/PmzaVu3bp59cHsc1u8eLEEQHriiSe82hCfR2xsrOp9kWm/R1JTU6WIiAipd+/equ/5jz76SHkmMvl7/ptvvlG25efnS1WrVpVuu+02r2uJ9H6vZNrPVkJCgvK7ZWTo0KFBf+ea/R430q1bN6lJkybKd9LOnTulJ554QgIg3XTTTcpx1157rdShQwfVufJ3r973qiR5v28DBgyQIiIipP379yvbTpw4IcXFxUldu3ZVtsnva+fOnSWXy6VsT09Pl+Li4qQOHTpIubm5qmuJn5fivLdERGUFh44SEZVhH3/8MRYsWKD63x9//OF13B133IEKFSoor+UKMXmVvLS0NCxfvhzDhw9HrVq1VOfqVUk9/PDDXtuGDBmCEydOYMmSJcq26dOnIzo6GrfddpvqWLvdjoceekh5HRERgYceegipqalYv369z3vetGkT9u7di7vuugtnz57FmTNncObMGWRnZ+P666/H8uXL4fF44Ha7MX/+fAwYMEB1T02bNkWfPn18XkM2fvx4zJgxA61atcL8+fPx0ksvoU2bNmjdujV27txpeN6JEyewdetWDBkyRDU5dbdu3dCiRQvdc/y9RwBU1UN5eXk4c+YMrrnmGgBQDZUyq0uXLlixYgWAwmqozZs348EHH0RiYqKyfcWKFShfvjyuuuqqgNuXNWvWTLkfAEhKSkLjxo1NrdIozz8kDl366aefkJeXpztsNDs7G0lJSUhKSkKDBg3w4osv4tprr9UdKggUVs316NEDEydORG5ubqC3ZpokSXjsscfw3//+F99++y2GDh2q7FuwYAHS09MxePBg5fN85swZ2Gw2dOjQQfU75cuYMWO8vg+qVq2q7L/tttuQlJSkvD537hwWL16MQYMGKdVwZ86cwdmzZ9GnTx/s3btXGfI9d+5cXHPNNUq1KFD4PvobuuvLzJkz0aVLF1SoUEF13z179oTb7cby5ctVx4fqe2zIkCHIz8/HrFmzlG0//PADXC6X6fmuhg8fjqSkJFSvXh033HCDMvxSO2em9rty7ty5AOBVoSkvyDFnzhy/1zb73OSh4GPHjvVqI5DqV9nChQtRUFCAp556SrUYygMPPID4+HivvpcrV071PCMiItC+ffuQrs5avnx5rFmzBidOnAj4XH+fp2C+x/Xs2rVL+U5q2rQpPvzwQ9xwww346quvlGOGDBmCNWvWKJWRQOE/P2vWrIlu3br5vYbb7caff/6JAQMGqOZyq1atGu666y6sXLkSmZmZqnMeeOAB1Rx8CxYsQFZWFl544QWvCjrt56Uk3lsioksZh44SEZVh7du3N7UYgvaPTvmPi/PnzwMo+sPCbJiit9Jpr169UK1aNUyfPh3XX389PB4PvvvuO9x8882Ii4tTHVu9enWviZcbNWoEoHD+HDk80rN3714AUAUVWhkZGcjPz0dubi4aNmzotb9x48bKH7z+DB48GIMHD0ZmZibWrFmDr7/+GjNmzMBNN92Ebdu26Q7pOXz4MAD91V8bNGigG4r5e4+AwmBk/Pjx+P7771WLMQCF9xyoLl264NNPP8W+ffuwf/9+WCwWXHvttUoA98ADD2DFihXo1KmT6g/rQGnvDSi8P/HejLRs2RJXXXUVvvvuO2VuphkzZiAxMVE3MI2KisLs2bMBFC6oULduXdX8Q3rGjRuHbt264dNPP8X//d//ee1PS0uD2+1WXpcrVy7g1f2++eYbXLhwAZMmTcLgwYNV++TPtDzPl1Z8fLypa7Ro0QI9e/Y03K/9vd23bx8kScLLL7+Ml19+Wfec1NRUJCcn4/Dhw15Dz4DC36Vg7d27F1u2bFGFf9pri0L1PdakSRO0a9cO06dPx/333w+gMNS45pprTK/YPGbMGHTp0gU2mw2JiYlo2rSp7iIY2md++PBhWK1Wr+tUrVoV5cuXV747fDH73Pbv34/q1asHPOzdiNw37XseERGBevXqefW9Ro0aXgFNhQoVVPNCFtfEiRMxdOhQ1KxZE23atEH//v0xZMgQr4UD9Pj7PAXzPa6nTp06mDx5srJoTsOGDVVzfAKFod9TTz2F6dOnY8yYMcjIyMD//vc//N///Z+pUDQtLQ05OTm6v49NmzaFx+PB0aNHVUP1tZ9NOeQz8+8BJfHeEhFdyhi0ERGR4cpx0sU5gwKlNy+TzWbDXXfdhcmTJ+OTTz7BX3/9hRMnToRkRTSRPNn322+/jZSUFN1jypUrp5pYPBTi4+PRq1cv9OrVCw6HA1OnTsWaNWtMVRuYYeY9GjRoEFatWoVnn30WKSkpKFeuHDweD/r27es1CboZ8uTsy5cvx4EDB9C6dWvExsaiS5cu+OCDD3DhwgVs3LjRa46+QBX383fPPffghRdewD///IMaNWpgyZIleOihh3SDDZvN5jNs0tO1a1d0794dEydO1K3WbNeunSpEGDt2rO5k/7506tQJmzZtwkcffYRBgwapwg/5vZs2bZqqAk0WqlVMtb+38nWfeeYZwypPs8GTGWJYKV+/V69eeO6553SPl8N3WSi/x4YMGYInn3wSx44dQ35+Pv7++2989NFHps/3F2rKjOawC6aiTBbocystwb5fRs9G+/kBCr8Tu3Tpgl9++QV//vkn3n77bbz11lv4+eef/c4VFup/LhqJjY31+1mpUKECbrzxRiVomzVrFvLz80P+z09RceZXLKlnR0R0qWLQRkREfsn/9X/btm3FamfIkCF45513MHv2bPzxxx9ISkrS/QP+xIkTyM7OVlW17dmzBwCUSd+N/tiSJ+qOj4/3+ceLvOKgXC0k2r17t+l70tO2bVtMnToVJ0+e1N1fu3ZtAIUVQ1p628w4f/48Fi1ahPHjx2PMmDHKdr37M6tWrVqoVasWVqxYgQMHDihDp7p27YpRo0Zh5syZcLvd6Nq1q892ihMamDF48GCMHj0aM2bMQO3ateF2u4s1ZFHPuHHj0L17d91VaadPn64aVmqmWkarQYMGmDhxIrp3746+ffti0aJFSqWn/JmuXLlywCFhccj34XA4/F63du3apn+XKlSo4LUKZUFBgdfvS/369XHhwoWQ3XMg32N33nknRo0ahe+++w65ublwOByqlXXDpXbt2vB4PNi7d69qwZDTp08jPT1d+e4AfH8Hmnlu9evXx/z583Hu3DmfVW1mf3/lvu3evVv1O1BQUICDBw+G7H2UK8u0nyGjar9q1aph5MiRGDlyJFJTU9G6dWu8/vrrxZ6UPxzf474MGTIEN998M9atW6csLORrsRhRUlISYmJidH8fd+3aBavVipo1a/psQ/4e2rZtW0gDdiKisohztBERkV9JSUno2rUrvvrqKxw5ckS1L5D/Qt2yZUu0bNkSX3zxBX766SfceeedutU4LpdLFWgUFBTgs88+Q1JSEtq0aQMASgin/WOrTZs2qF+/Pv7zn//gwoULXm2npaUBKPwv7n369MGvv/6quqedO3di/vz5fu8lJycHq1ev1t0nz4NnNGyuevXquOqqq5ThgrJly5Zh69atfq+tR64g0L4f2pUZA9WlSxcsXrwYa9euVYK2lJQUxMXF4c0330R0dLTynhgxeq9CpVatWujSpQt++OEHfPvtt6hbt66yAm2odOvWDd27d8dbb72FvLw81b5OnTqhZ8+eyv+CCdqAwt+PuXPnYufOnbjpppuU8K5Pnz6Ij4/HG2+8AafT6XWe/JkOtcqVKyvhol5oLF63f//++Pvvv7F27VrV/unTp3udV79+fa/51T7//HOviqRBgwZh9erVur+P6enpcLlcAd1PIN9jiYmJ6NevH7799ltMnz4dffv2RWJiYkDXC0b//v0BeP/evvvuuwCAG264QdkWGxur+ztl9rnddtttkCQJ48eP9zpOfB5G19Hq2bMnIiIi8MEHH6jO//LLL5GRkaHqe3HEx8cjMTHR6zP0ySefqF673W6vIfOVK1dG9erVQ1LRHI7vcV/69euHxMREvPXWW1i2bFlA1Ww2mw29e/fGb7/9hkOHDinbT58+jRkzZqBz585+h6D37t0bcXFxmDBhgtd3ICvViIjUWNFGRFSG/fHHH9i1a5fX9o4dOwYcBnzwwQfo3LkzWrdujQcffBB169bFoUOHMGfOHGzatMl0O0OGDMEzzzwDAIZ/KFSvXh1vvfUWDh06hEaNGuGHH37Apk2b8Pnnn8PhcAAo/GO9fPny+PTTTxEXF4fY2Fh06NABdevWxRdffIF+/fqhefPmGDZsGJKTk3H8+HEsWbIE8fHxyhxd48ePx7x589ClSxeMHDkSLpcLH374IZo3b+53LpmcnBx07NgR11xzDfr27YuaNWsiPT0dv/76K1asWIEBAwagVatWhue/8cYbuPnmm9GpUycMGzYM58+fx0cffYSrrrpKNyD0Jz4+Hl27dsXEiRPhdDqRnJyMP//8EwcPHgy4LVGXLl0wffp0WCwWZSipzWZDx44dMX/+fHTv3h0RERE+20hJSYHNZsNbb72FjIwMREZG4rrrrvOah6g47rnnHjz44IM4ceIEXnrppZC1Kxo7dix69OgRlrZl11xzDX777Tf0798fAwcOxK+//or4+HhMmjQJ9957L1q3bo0777wTSUlJOHLkCObMmYNOnToFNKwxEB9//DE6d+6MFi1a4IEHHkC9evVw+vRprF69GseOHcPmzZsBAM899xymTZuGvn374sknn0RsbCw+//xz1K5d2+t3acSIEXj44Ydx2223oVevXti8eTPmz5/vFWQ9++yz+P3333HjjTfivvvuQ5s2bZCdnY2tW7di1qxZOHToUMDhVyDfY0OGDMHAgQMBAK+++mqATy44V199NYYOHYrPP/8c6enp6NatG9auXYupU6diwIABqs9fmzZtMGnSJLz22mto0KABKleujOuuu870c+vRowfuvfdefPDBB9i7d68yxHzFihXo0aMHHnvsMeU6CxcuxLvvvovq1aujbt26uvPxJSUlYfTo0Rg/fjz69u2Lf/3rX9i9ezc++eQTtGvXLqTDHEeMGIE333wTI0aMQNu2bbF8+XKl6lmWlZWFGjVqYODAgbj66qtRrlw5LFy4EOvWrcM777wTkn6E+nvcF4fDgTvvvBMfffQRbDab11yO/rz22mtYsGABOnfujJEjR8Jut+Ozzz5Dfn4+Jk6c6Pf8+Ph4vPfeexgxYgTatWuHu+66CxUqVMDmzZuRk5ODqVOnBntrRERlT8kvdEpEROE2ZcoUCYDh/6ZMmSJJkiQdPHhQAiC9/fbbXm0AkMaOHavatm3bNumWW26RypcvL0VFRUmNGzeWXn75ZWX/2LFjJQBSWlqaYd9Onjwp2Ww2qVGjRrr7u3XrJjVv3lz6559/pGuvvVaKioqSateuLX300Udex/72229Ss2bNJLvdrrovSZKkjRs3SrfeeqtUqVIlKTIyUqpdu7Y0aNAgadGiRao2li1bJrVp00aKiIiQ6tWrJ3366afKffjidDqlyZMnSwMGDJBq164tRUZGSjExMVKrVq2kt99+W8rPz1eOlZ+z2D9JkqTvv/9eatKkiRQZGSldddVV0u+//y7ddtttUpMmTbzONfMeHTt2THl/EhISpNtvv106ceKE13Hy5+PgwYM+71GSJGn79u0SAKlp06aq7a+99poEQPX+y2rXri0NHTpUtW3y5MlSvXr1JJvNJgGQlixZohx7ww03eLXRrVs3qVu3bn77Jzt37pwUGRkpAZB27Nihe8zQoUOl2NhYv235+hx369ZNAqDbZy29913vswVAevTRR1XbfvvtN8lut0t33HGH5Ha7JUmSpCVLlkh9+vSREhISpKioKKl+/frSfffdJ/3zzz8++7FkyRIJgDRz5kyf/dT7jEmSJO3fv18aMmSIVLVqVcnhcEjJycnSjTfeKM2aNUt13JYtW6Ru3bpJUVFRUnJysvTqq69KX375pddnze12S88//7yUmJgoxcTESH369JH27dun+7nJysqSRo8eLTVo0ECKiIiQEhMTpY4dO0r/+c9/pIKCAr/9D+Z7TJafny9VqFBBSkhIkHJzc3WfjZa/Zy3z9RlzOp3S+PHjpbp160oOh0OqWbOmNHr0aCkvL0913KlTp6QbbrhBiouLkwCofl/MPDdJkiSXyyW9/fbbUpMmTaSIiAgpKSlJ6tevn7R+/XrlmF27dkldu3aVoqOjJQDKe2T0PfLRRx9JTZo0kRwOh1SlShXpkUcekc6fP686Rv6e1xo6dKhUu3Ztn89OkiQpJydHuv/++6WEhAQpLi5OGjRokJSamqp6v/Pz86Vnn31Wuvrqq6W4uDgpNjZWuvrqq6VPPvnE5zUD/TyZ+R43YvQcjKxdu1YCIPXu3dvvsbGxsV6/Txs2bJD69OkjlStXToqJiZF69OghrVq1SnWM/L6uW7dOt93ff/9d6tixoxQdHS3Fx8dL7du3l7777ju/92T2vSUiKgssksRaXyIiKjlnzpxBtWrVMGbMGN2VDLt3744zZ84Uez64y1VKSgqSkpKwYMGC0u4KUbF9/fXXGDZsGA4ePKjMr3i5cLlcqF69Om666SZ8+eWXpd0duoyE63t88+bNSElJwTfffIN77703pG0TEVHocI42IiIqUV9//TXcbvcV/0eC0+n0mmNq6dKl2Lx5M7p37146nSIixa+//oq0tDQMGTKktLtCl6iS/h6fPHkyypUrh1tvvTXkbRMRUehwjjYiIioRixcvxo4dO/D6669jwIABl111S6gdP34cPXv2xD333IPq1atj165d+PTTT1G1alU8/PDDpd09oivWmjVrsGXLFrz66qto1aoVunXrVtpdoktUSX2Pz549Gzt27MDnn3+Oxx57TLUiNxERXXoYtBERUYl45ZVXsGrVKnTq1AkffvhhaXen1FWoUAFt2rTBF198gbS0NMTGxuKGG27Am2++iUqVKpV294iuWJMmTcK3336LlJQUfP3116XdHbqEldT3+OOPP47Tp0+jf//+uqvEEhHRpYVztBEREREREREREYUA52gjIiIiIiIiIiIKAQZtREREREREREREIcA52nR4PB6cOHECcXFxsFgspd0dIiIiIiIiIiIqRZIkISsrC9WrV4fValy3xqBNx4kTJ1CzZs3S7gYREREREREREV1Cjh49iho1ahjuZ9CmIy4uDkDhw4uPjy/l3oSG0+nEn3/+id69e8PhcJR2d/xif8OL/Q0v9je82N/wYn/Di/0NL/Y3vNjf8GJ/w+9y6zP7G17sb3hdbv01IzMzEzVr1lQyIyMM2nTIw0Xj4+PLVNAWExOD+Pj4y+JDzv6GF/sbXuxveLG/4cX+hhf7G17sb3ixv+HF/obf5dZn9je82N/wutz6Gwh/U4xxMQQiIiIiIiIiIqIQYNBGREREREREREQUAgzaiIiIiIiIiIiIQoBBGxERERERERERUQgwaCMiIiIiIiIiIgoBBm1EREREREREREQhwKCNiIiIiIiIiIgoBBi0ERERERERERERhQCDNiIiIiIiIiIiohBg0EZERERERERERBQCDNqIiIiIiIiIiIhCgEEbERERERERERFRCDBoIyIiIiIiIiIiCgEGbURERERERERERCHAoI2IiIiIiIiIiCgEGLQRERERERERERGFAIM2IiIiIiIiIqIyQJIk7Dm7B/mu/NLuyhWLQRsRERERERERURkwb988PP3n0xi3dFxpd+WKxaCNiIiIiIiIiKgM+GPfHwCAbWnbSrknVy4GbURERERERERERCHAoI2IiIiIiIiIiCgEGLQREREREREREZUBkiSVdheueAzaiIiIiIiIiIiIQoBBGxERERERERERUQgwaCMiIiIiIiIiIgoBBm1EREREREREREQhwKCNiIiIiIiIiIgoBBi0ERERERERERERhQCDNiIiIiIiIiKiMkCCVNpduOIxaCMiIiIiIiIiKgMkiUFbaWPQRkREREREREREFAIM2oiIiIiIiIiIiEKAQRsRERERERERURnAOdpKH4M2IiIiIiIiIiKiEGDQRkREREREREQUZvvO7cPxzOOl3Q0KM3tpd4CIiIiIiIiIqCxLz0vH/83/PwDA7MGzS7k3FE6saCMiIiIiIiIiCqNTF06VdheohDBoIyIiIiIiIiIKI0mSdH8uK95d/S4m/jWxTN5boBi0ERERERERERGVkHCuDFoaQVeeKw9LDi3BiiMrcDb3bIlf/1LDoI2IiIiIiIiIKIwsFovys9vjLsWehJ4Y7jndzlLsyaWBQRsRERERERERURiJYZRH8pRiT0LPLRUFhy6PqxR7cmlg0EZEREREREREVEIutaDN6XbimT+fwZSNU4I6X6zQc3pY0cagjYiIiIiIiIiohIgVYKEWzPxvq4+txu6zu/Hzrp+DuqZ4P/mu/KDaKEsYtBERERERERERlZBLsaKtOMT7yXczaGPQRkREREREREQURmKl2aUWtBWXOHSUFW0M2oiIiIiIiIiIwkoM18K56qi46IL4s89zghhuKlINHWVFG4M2IiIiIiIiIqJwEoO2kqpoEwM0s6FbMFjRpsagjYiIiIiIiIhIx5GMI3huwXPYfGpzsdopjaBNvk5mfiZG/D4C0zZP0z2uuCEcK9rUGLQREREREREREen49+J/Y+eZnXh5ycvFakes+irpoO333b8jNScVP+74MazXAVjRBlwCQdvHH3+MOnXqICoqCh06dMDatWsNj/3555/Rtm1blC9fHrGxsUhJScG0adO8junduzcqVaoEi8WCTZs2hfkOiIiIiIiIiKgsOp93HkDx5zFTzdEmhXGONp1FF8I5bBTQDB1lRVvpBm0//PADRo0ahbFjx2LDhg24+uqr0adPH6SmpuoeX7FiRbz00ktYvXo1tmzZgmHDhmHYsGGYP3++ckx2djY6d+6Mt956q6Rug4iIiIiIiIjKsIrRFYt1vhiulXRFW7ipho6yog320rz4u+++iwceeADDhg0DAHz66aeYM2cOvvrqK7zwwgtex3fv3l31+sknn8TUqVOxcuVK9OnTBwBw7733AgAOHToU1r4TERERERER0eXF5XHhzZVvonlic1j91B69tvw15efq5aoX67qlOUebxWLxeVyxVx1lRZtKqQVtBQUFWL9+PUaPHq1ss1qt6NmzJ1avXu33fEmSsHjxYuzevbvY1Wv5+fnIzy/6MGRmZgIAnE4nnE5nsdq+VMj3cbncD/sbXuxveLG/4cX+hhf7G17sb3ixv+HF/oYX+xt+l1uf2d/wWHBgAVYfXY1VR1bhobiHfPZ39dGibCLWEVuse8svyIfHUxh85RXkBdyW2efr8XiU6+QX5CPSEgm3261s0zvf5XIp+wsKCvwGc1p5zjzl/Jz8HFWWcql/HgJh9l4sUrgH6xo4ceIEkpOTsWrVKlx77bXK9ueeew7Lli3DmjVrdM/LyMhAcnIy8vPzYbPZ8Mknn2D48OFexx06dAh169bFxo0bkZKS4rMv48aNw/jx4722z5gxAzExMYHdGBERERERERFdklanr8aic4sAAP+u92+fx752oKiirXFMY9xe9fagr7vtwjb8mvorAGB48nBUjyxehZyRj458hHRXOgDgqVpPoZy9HJadX4YV51cA0L/njZkbMefMHADAS3VfCjhoO5BzADNOzQAANItthlur3FqMO7h05eTk4K677kJGRgbi4+MNjyvVoaPBiIuLw6ZNm3DhwgUsWrQIo0aNQr169byGlQZi9OjRGDVqlPI6MzMTNWvWRO/evX0+vMuJ0+nEggUL0KtXLzgcjtLujl/sb3ixv+HF/oYX+xte7G94sb/hxf6GF/sbXuxv+F1ufWZ/wyN3Zy62bt2qLBDgq79fzfoKLo8LANCgegP079w/6OvGHIrBqrWrAABdunZB40qNAzrf7PP95X+/ICInAgDQs1dPVIyuiMztmdi9fTcAoH9/73uwH7Bj3T/rAAB9+vWB3RpYVLTh5AYsXLEQAFC3el3079z/svk8BEIe/ehPqQVtiYmJsNlsOH36tGr76dOnUbVqVcPzrFYrGjRoAABISUnBzp07MWHChGIFbZGRkYiMjPTa7nA4yswHQna53RP7G17sb3ixv+HF/oYX+xte7G94sb/hxf6GF/sbfpdbn9nf0LLarLBarcpQR1/9lSDBar04j5sFxbovi82itGW1WYNuy+/ztUC5js1uKzze7lC26Z1rs9mU/Xa7HQ5bYH0T780luVAgFSAtLw1ZrqxL/vMQCLP3UWqrjkZERKBNmzZYtGiRss3j8WDRokWqoaT+eDwe1fxqRERERERERER6zC5EIEmSapGA4i5gUFKLIehdxwLzQ0GN+ubyuDB/33ykZqd67RMXQ8hz5WH9yfV49I9H8Vvab6avW5aU6tDRUaNGYejQoWjbti3at2+P999/H9nZ2coqpEOGDEFycjImTJgAAJgwYQLatm2L+vXrIz8/H3PnzsW0adMwadIkpc1z587hyJEjOHHiBABg9+7C8siqVav6rJQjIiIiIiIiorJNDIV8HiepjzN7npnrhjNoE/stXzOQOdeMViCdvXs2vtr0FWIdsfh+4PeG13R5XHC6CxcNsMFm+rplSakGbXfccQfS0tIwZswYnDp1CikpKZg3bx6qVKkCADhy5EhRmSaA7OxsjBw5EseOHUN0dDSaNGmCb7/9FnfccYdyzO+//64EdQBw5513AgDGjh2LcePGlcyNEREREREREdElRwySfK0NqQ3DPJIHJ7NOYtaOWbi16a1Ijk8O6Lpie8UN7cxeJ5hAz6hvG05uAABkO7N9XtPtccPpKQza7JbLblmAkCj1u37sscfw2GOP6e5bunSp6vVrr72G1157TfdY2X333Yf77rsvRL0jIiIiIiIiorJCFUTBOIjSBk5uyY2xS8fi5IWTWH9yPb4e8HVA1xWrvkp66KjVUlTAJEmSzwo3o4o2X/O2ic/KLbmLKtosV2ZFW6nN0UZEREREREREVJJU1VeScWWZbkXbhZMAgLO5ZwEUhlZv//U2pm2eFtB1wzp01M8QVV/3bHQOADisRUGbHKTptenyuK74ijYGbURERERERER0RTAbeGkDKb1jd53ZheVHluPHHT8GdF1/YVdx+FsMQe8+xG2+htPKzuedV71WVbR53ChwFwBgRRsRERERERERUZmmCrxgHHh5DR3Vmbss351v+roltRiCKjS7OAxUHCqqdx9mQsALBReUn8/lnlPtUy3AIAwdZUUbEREREREREVEZJldbAb4ry8xUtAUSmBlV0plt48D5A1h4diGyC7wXIzC6jtvjxrbUbZiyaYqyzeVx+TxHW9F2Pvc83B43sgqylG1eQZt2jjYP52gjIiIiIiIiIirzxKDNV8il3acXyomhlL8hl6qqr4vB1M87f8bgnwbj4PmDvjsNYNSCUfg7429M2TzF8BhJklSLGXgkD0YvGq06xl9gKP/815G/MPy34Rjy6xC8uvxVVdB2Nues4fluj1sJ8xi0ERERERERERGVYaYr2jyBVbT5q0zTO3bKpinIcebg8/Wf++60YNeZXYb7zFTh6d2z3nDTN/96E2k5aQCA9SfXIzM/UzlGfIbaNl0eF4eOlnYHiIiIiIiIiIhKgipo8zFHm96qo1ra6jFffM3RZreaD6R8zQtnps9+52jT2Q/4Dig5dFSNQRsRERERERERXRHkaisgsDna/AVUwVS0yeSgLSMvA0/88QR+3fWrYTvFDtpMVrT54rVQhKS/6igr2oiIiIiIiIiIyrBg52jzIHRDR7Vhlxy0/bb7NxxMP4gvN35p2E6eK89wn5nhrsUNDAHvBRW8Kto4dJSIiIiIiIiIKLSWHlqKh//3MI5mHC3trihCOUebuACC36Gjkv+ho2K1nRHt/Gi++mh2pVTxXiVJCmhhB7025ao7Dh0lIiIiIiIiIgqRd1a/g+NZx/HfNf8t7a4oVBVtOlVqMjNDR8Vhlr5CO8D3PGhy0BZhi1C2mQndfF1D7zXgXY2mPS7XlYuxS8f6vI5XRZvm3uWqO1a0ERERERERERGFmK/hjiVNDNpcknfoJAt0GGYoFkOwWooimoz8DJ/t6V4jBKuO/rH3D2w8tdH3dbRztGle5zpzAbCijYiIiIiIiIioTFh0YBHeWvmW11DLAk9gc7RZYDE8VqzsCnQxBPFcOWjLdeUq287mnMX6E+uRkWc+cAvFqqNnc8/6vY7ZirYrNWi7Muv4iIiIiIiIiKhE+JvzKxx+2vkTjmYeRf+G/dGiSgtluzgk08zQUYfNgQJ3gW4lmK9513wd65bcyHcVrR4qB23ZBdnKth+3/4i1J9YiMSYRU26e4rNtoz74q17T2+avmk2vXa+KtouBoQ1XZtDGijYiIiIiIiIiChtxLrOSku0sDK3kijZ5kn+ziyHI4ZPD6lC9FhWnok1eMAAoej45zhxl29oTawEAZ3LOACgK47TXFZka7moyfPPF33Xke5Of3ZWGFW1EREREREREVKbIwxddHhfyXHl44o8nUL9Cfa/KMiNymCQHXHpDLsXAS2+/yCtoEyra5uydgzxXnhIO6om0RSo/5zhzEB8Z73WMdi48o6GjkiTBYrH4PM4XDh31jRVtRERERERERBQ2JT10VJIkZUJ+t+TGqqOrcPLCSaw8ulK9KIGPoaNy+CSvBKoNoyRJCnoxhH9O/IOZO2aq9i86uEhV0eZ1T0JVYFZ+lu4xWQXq7Xp9OpZ5DIN/GozpW6ab7rtMDvvMrMgKcOgoEREREREREVHIlfTQUafHqVzT5XHhXO45ZZ8YKrkkFzySBwfOHzCc30we/qi9h7t+vgvfbPlGt1094v7dZ3djwYEFXseIc7RpiVVkRiuSXii4oHq968wur2O+2PgFsp3Z+H7797p98yUuMs6rL4BxZaDdcmUOomTQRkRERERERERlhlzNBhQufpCel668FgMzj+TB99u/x5PznsSMrTNUbchVWg6b/jxjFwouqIeO+hiGamY/AJy4cMJwn3gt8X5EmfmZqtdz9s7x2Q5QOAx1/cn1fvsGAOUc5QAUPl8xnDOsaOPQUSIiIiIiIiKi0CrpoaPyqpdAYcB1Pve87nEeyYMfd/wIAPhh+w9e+wDzE/qLwdOW01uw6ugqw/2BkiRJdb5R0KataDNj3NJxSMtJM9wvhmXlIgqDti2pW/DcgueU7Ub3xqCNiIiIiIiIiHA+9zyOZhwt7W4UmyRJWLB/AQ6eP1i6/TAYOrr+xHo8OudR7D27N6TXExcFcHlcOJ+nH7S5JP3VOwFh6KhBRZvX8RerutweN15a/BImrJygCsSKE7Rpq+GMgkOjudt82Xlmp8/94mqn8tBRoHD4q1H/lHM5dJSIiIiIiIiIhvw6BCPnjkRqdmppd6VYVh9bjQ/WfoAn5j1R2l3RNW7ZOBzJPILxy8abOt5sZZw4dNTlcRlXtMEDq0U/FlGGjgZY0SZ+ZsTAz9+qpLLKMZW9tmmHey44sABvrXzLa0437WIIwbq/1f1oVLERJlw/QRW0yRVtMnnlVKN7Y9BGRERERERERIp95/aVdheKpbQr2czSzi2mJUkSpm+ZjkGzBmHd8XV+29NWtBkFUG7JjWh7tPJaDo4AYeioyYo2+fiTF06qrq3d78+g5oO8tmmDtrO5Z7Hy6EpM31q0cuiaY2uUBRbiIuJgxoL93gsyAEDjSo3xTp93cFXlq3wGbfJzNapo49BRIiIiIiIiIlIUZ7jf5aLAXYDFBxcjI09/JctQ8FeJ5m9V0j1n9+D77d8jz5WHhQcW+r2eOEeby+MyfB89kkcVEonVaPJ2MWjyRb7GiayiBQ2cbqfXfn8qRlf02mZUMTZ7z2wcOH8AAPDfNf9Vtt/Y6EZT1/pg7Qe6223WooDMV9AmB6R6/bNYLIbVgmXdlXnXRERERERERH5crkHb1tNbcTLrpKmgY+qmqXjv7/fw/MLnDY85lnkMUzZOCTqMK+5zFCfr33vO/3xu2qGjTo9T97h8T76q+u1Q+iHlZ7nPdqsdFlj8XlMvaHN5XJAkCSsOr1BVuvlSKaaS1zaj/gPAk/OeRJ4rT1WZ16BiA3Ss0dHU9fSI4ZqZoE3v/b1Sh40CwJV750REREREREQ+XI5B24HzB/Di4hcBAHe3uNvv8X8d/QsAcDzruOExj8x5BEDhqpaPd3hctU+SJGw+vRnVYqoF22UAwAdrPkCver3QNKmp1z6xYiotJw1ncs4gMSbRsC3t0FGxskyU5VYPKd2Wug1dandRXdNqscJmtXkN39SSPyunLpxStv2661csP7Lc53laehVtRv2XDf5psKp/9SvUR6uOrXDrj7cGdG2ZGNCqFkPQDEn958Q/hkGmWBV3pWHQRkRERERERKTjcgzaxBU8zVRi+Ru2KRKrtWTrT67H+GXjIUkSHoh9wHRbWgsOLMCCAwswe/Bsr33akOtY5jHDoG3qpqmYtXOW8rrAXWA4h1i6K131jLamblV+ls+xWWymKgPl48WQL9CQDQBiHDFe28ShsHrE53Pf1fehUkwl0wtH6DFb0fbb7t/w2+7fvLZrz7vScOgoERERERERkQ6zK0VeSsTgzGLxH7T5U+AuUH6umVDTa/+W01sKr+sj2AkkzNOjDcqy8vUXN8jMz1SFbIA6+NI65zwHAEiMSYQFFhzNPIqTWSeR48zBtC3TABRWZpkJ2uRQ1l/1mT8Oq8MrIBUXafBHfo+K896LixjIgZkFFt0QECisdNSed6UuhACwoo2IiIiIiIhIIQZGYkVbZn4m4iPjS6NLARH7HMjcYkaOZhxVfk6ITPDa77D6X5WzuEGbtqLNaJXSc7nnvLaJ87VpyQFexaiKqBlfExtPbcSyw8twPve8EjBaLVZToZEStPmYT80Mi6Uw0Mp2Zivb/FW0iSJtkcW6PqC/GEKUPcpvlVq0I1oJ3VjRRkRERERERESq4En+ee7eubj757vx046fAAA5zhwczzSe06w0iUGhmaomf0MMxbnb9IZgOmz+g7bi0lYWGgVtZ3POem0zE1LZrDZ0qVU4N9uGkxuw5+yeon0mh47KnxV/c7mZEe2IVr32VZWnFWkPQdAmBItykBrtiPY771qMvaji7Uqeo41BGxEREREREdFFekHbpH8mAQC+3vw1AOCh/z2Eh+c8jIPnD5Z4//wp7rxyC/YvwAsLX1CGZ4rDFvWG0pqqaCvGfGGAd8BnGLTl6gRtPiraZDaLDXXK1wEAnM4+rQqJrBZriQ4dBaBaQRQoCtqsJiKccFW0Rduj/VapiUNLr+RVRxm0EREREREREV2kF7RppeelAwDWnVhXEl0KiDhM00xApB3W+cHaD7A9bTu+2/YdAPVQSH8VbVmuLN3507TX0Bvi6YvZoaNncs54bTNb0Va1XFWlb7vP7lbtM1OdJYeQxR06CngvOiAHbWbCq1BXtMn3Hm2P9juEVqzEY0UbEREREREREalCIaPVKmWhGCYYKKfbiY/Xfow1x9bgs38+w9RNU1X7VUNHzaw6alBtJoc74j3qBY8Rtgjl5/8e+S/u/e1enxVsv+z8BUN/HYpZO2YZHqMlh1jytQIZOqo37DIuIk712m61o1xEOUTZo7yODXToqDZoq1+hvt9ztbRzAcr3YKZ6sDTnaIt1xBa1wcUQiIiIiIiIiEgcHulvyGNpBG1/7PsD8/bPw7z985Rtd151p1LJpFoMQZijTZIk3TnbjBYqkMMl8XnoDR3VC1TyXHle84zJvtr0FQBg6uapuvtFB84fwOT1k5WAp0JUBZzOPh3Y0FGdirZIe6QqkLJarLBYLLqhXMCLIWiGjmpDs1e6v4KNpzbil12/eLXx+nWv654zZdMUAKVT0RbIHG3ie2632oHLb9HekGBFGxEREREREdFFYlB1KVa06Q2PzHcXzaMmBmdiRZvRvRiFiXLQ5m/oqF6Vm7zypK9jzHh9+evYlrYNm05vAlAYtAFAZoF+0Ka9LlC4cIWWFVbERRZVtcnBknZuNCCIOdo83kHb/13zf7Bb7Xipy0toVa0VKkZX9Dp/1DWj0LJKSwD6q7sCgMNSehVt/oaO2iw2VXUjh44SERERERERkak52mR6FV6lQazEMqpoC7Svcqgihol6waJe+KYNvNLz0vH43Mfxz4l/AupDRn6G6rUcUOnNAwfov196VWo2qw3xEUVVY3KY9GKXF72OdXqcpuZd81XRdl3d6zDz9pm4psY1quuJxLnuxBBQZKaizd/wTjN052hz+F4MIcIWodrPoI2IiIiIiIiI1BVtfsKp0qho0yOurGk0R5thRZufoaP+5mjT25btzPbadijjEN5e9bbutYzERsTqvs535+tW4pl9P6wWq2qYo3yvKVVT0LZaW9Wx+a58w6GqIrfkhtvj9nqe8rxlYgilN9eauE07h5zMTIimNzw4UGIbytBRu++ho5H2SHVAdwXP0cagjYiIiIiIiOgiMSjRC27EgMff0NKzOWfx/bbvkZGX4fO44jKqaFMt7GAQGvobOio+A7029LbpDeH0dS0j4uT6gHpop957E0jQZlR9pV0QId+djwJ3gd82PZJH9/oxjhivbWL1mkzsjzZgVM4zMXQ01CpEFw7XTYpN8l3RZo3QHXJ6Jbpy75yIiIiIiIhIQwyq9IYMiuGav2Bn3NJxOJRxCJtPbcaEnhOC7tOaY2uQmp2KmxrfpLs/15WL1OxUTPxrIvJdwnxtQrBlNAw2kIq2YOdokzWq1AibT2/W3aenXEQ51WsxBCtwF3gFVmbngrNZbKogSPxZu5iA+Dx9cXvcup8XvdBMr6JNDKn05ooDzA0dDbVbm96KBhUbIKVqis8qtUh7pOq+ruSKNgZtRERERERERBeJYY2/qil/Q0sPZRwCAGxL21asPr224jUAQPPKzXX35zpz8eGaD7H77G7Vdn8hmS+mK9pMzNEmM1PlJK6Oqq0GE4O2kFa0WXxXtMkssBgGkx7J4zU/G+BdlQfoPwdxmK/Riq2lUdEWZY9C++T2fo+LtEWqFkO4kivaOHSUiIiIiIiI6CIxTNILbsQwpaTnaDufe153e54rT3ceMTEEC3ToqFxhFWxFm167ekGUlng9bUhlt9qVqim94Zxmw0SbVV3RJq4qqq0mEyva4iPjYeSLjV9g//n9XtuNhoFqifOi1S1fVxVayewWe0jmYAuHCFuEqsKQiyEQERERERERUUAVbWZWowxUvisf0zZPw95ze02fk+vK1d0u9vXFRS9i3NJxkCQJpy6cwuNzH8eSg0tUFVpiOGa2ok13MYSCbN3Qy8zz8hVe2q12JYDSDdpMrqyqrWjzOXTUbS5oA4BXlr3itU1vjja9qjixoi3SHokZt87wOibQoaNim+EWaVdXtF3JQ0cZtBERERERERFdpBe0iYGFGASJixBonck5E9T1f9j+A37c8SOeXfis1z6jYYt5rjzdwEvs66nsU1h/cj0y8jMwYcUEHMo4hHf/ftdwcQezc7QZLYbgrz9GfK1yKlai6YV2gQwdVa2Q6WMxhB51eig/G60GKtN7f/SGjupV+2kr1bSBH6A/t5vo2Y7qz4xRVVmV2Cp4tcereKf3O7qVc8GIsEVw6OhFDNqIiIiIiIiILhLDEnmooxiCiGGO0UT5Lo8Lw34bFtT1D5w/YNw3g2GeuU79irZTF07pHnsgvegaRqusFqeizWjoqJnVO+UAbe3xtVh5dKVqn1jRpjcMNdjFEIzmaHu03aO4odENqFe+HgCgb4O+ptoXma1oS4hM8NuWzWIzrFK766q70LV2V9U2o2Oj7dFIqZqCRpUaYebtM/1e14xIGxdDkDFoIyIiIiIiIrooFBVtRsFXoNcH1OGaUUVbritXd9+KIyu8tqXnpSs/ayu0/AZtehVtOtuMKuzMztHm8rjw6vJXvfbZLDafQ0fFvrap1sbwGl6LIQiVX5G2okqyttXbwmqx4o3r38BbPd9C9zrd/fZfS2+ONvG5P9vxWYxoNQI1E2p6HfdE+ydUrx0Wh+FnQLsCK+BdJScT56QTfzbjvqvvQ8caHb22R9ojVX1gRRsRERERERER6QdtRhVtbv2KtlBdH1AHWUYVbUbBlp5jmceUnytFV1K1qRe0iYGW3jX0qtycHqd+0GZijrZxS8fhZNZJ3X3iYghyW3/u/xMPzn4QJ7JOKM9q8k2T8VCbhwyv4WvVUXHIphzqxUbEollSs6AWItAb7tmySksMaDwAT3V4Cl1rd8XNTW7WPbdX/V7oW7+ois7XHG161zEK0QIN10S3NbsNo7uM9toeZY9Sz9HGxRBK18cff4w6deogKioKHTp0wNq1aw2P/fnnn9G2bVuUL18esbGxSElJwbRp01THSJKEMWPGoFq1aoiOjkbPnj2xd6/5iSSJiIiIiIjoyuRv1VEzFW1GVUdmaAMqMwFaIBV0GfkZys8F7gLDoaOSJOHTfz7F5tOblW27z+7GplOb/PbP6dYP2swMHT2aeRTz98/X3Wez2pSqKbk67sO1H+LkhZP47J/PlPcu0hbpNdeath2jijYxhNKbv+zfXf6NnnV7+r0PmV44Z7FYcH/r+3F9vev9ni8Gf3aL3XA4qF5Fm1Ggpu3Tg60f9NsPrTeue0P1OtYRqwr7WNFWin744QeMGjUKY8eOxYYNG3D11VejT58+SE1N1T2+YsWKeOmll7B69Wps2bIFw4YNw7BhwzB/ftEv4sSJE/HBBx/g008/xZo1axAbG4s+ffogL894okoiIiIiIiKiUAwdNVtdJvt+2/d4d/W7mLJxCk5fOB1wW4FUtGXmZyo/F3gKDCvaJEiYs3eO1/kvL3lZ9dpoddFgF0MAgBNZJ3S3+1p1NNuZrYSGdqsdFaIr4PlOz+u2Y7VYVSGUWNGmWv3T5r0gQYcaHfDkNU+auo9QUIVXAVa0iQs5iLQB3E2Nb0LNeO+hq760qNICw1OGK6/LRZRTBZPFqZq73JX6nb/77rt44IEHMGzYMDRr1gyffvopYmJi8NVXX+ke3717d9xyyy1o2rQp6tevjyeffBItW7bEypWFkyRKkoT3338f//73v3HzzTejZcuW+Oabb3DixAn8+uuvJXhnREREREREdLkJZOio0VBIveGURgrcBZi+dTqWHFqCn3f9jNQcddGJ2JZRmJZVkGU4rFRLFbRpwipfK34aMQrU9p7zHlVmZugoAJzNOau73WaxKYGSr77LIU/nWp112/E1R5sYEAUzVBQA6pWvh4YVG+LelvcGdb5INe+ZxW7YJ73qu+GthutWq+mFYGY/PyLxGWqDtiu5oq1U77ygoADr16/H6NFF43utVit69uyJ1atX+z1fkiQsXrwYu3fvxltvvQUAOHjwIE6dOoWePYtKORMSEtChQwesXr0ad955p1c7+fn5yM8vGlufmVn4xeN0OuF0mvsiuNTJ93G53A/7G17sb3ixv+HF/oYX+xte7G94sb/hxf6GF/sbfmb7XOAsgMdTGB4VuArgdDrh8XiUbbkFucrPLsml215+Qb5yjPb6WjkFOV7HAkXBR76zqC2nywm32+11/KHzhxAfGa/bjtb5nPPKcXnOPFWQl5tfdG/ic9C7P2UOt4vHyf2VJAnHM49j7JKxXuflecyNMjuWeUz/mXgkWGGFx+NBnjNPeW+AwvdK/llyS8rzblqpKbanbUesIxbZzuyLDQEWyaL0V/IUHV81pmrR8/bxWfH1rGMdsRjfbbzfNsywSBbl+TqsjsKfL1bu9azbEwsPLlSO017LAgs6JXfCp/98qm5U8u6X2+M2dd96fQOAKGsU4BGey8X/u5y+I/wxey+lGrSdOXMGbrcbVapUUW2vUqUKdu3aZXheRkYGkpOTkZ+fD5vNhk8++QS9evUCAJw6dUppQ9umvE9rwoQJGD9+vNf2P//8EzEx3kvxXs4WLFhQ2l0ICPsbXuxveLG/4cX+hhf7G17sb3ixv+HF/oYX+xteZwvO4v5p96NT+U6oGaU/VO5w7uGiqYzSgblz5+L0qdNwSoV/ZC9fuVw11dGcOXO8qozOO897TYc0d+5c3evlunMNp05CHLBo8SJl/+rVq3Es7xhSM7yPt8Biam64zRmbkZqfqnvOoiVF19rg3IDU8/r9+m3Ob4i0Fg6r3Jq6FakXio5LS0vz24dgrf5rNQ5mHkRqdipW/b0KBTsLlP66z7tx1llYCffn/D+V4aBt3G1Q2VoZ6XnpmH+2cMqpvdl7kR2ZrfR3w/oNsO4tqvLqY+uDGFuM4XsGwPg9A3DowiHMzTY+NxBb0rcg9VzhtexV7Ug7nQbPxRRrd95upGYW7lv791qcjznvdX6eO8+rrzFZMZibq+7foaOHcN5ZeL6v+xZtztqM1LSLn5e/NyDKFqVca7trOzqV73TZfUf4kpOTY+q4y7KWLy4uDps2bcKFCxewaNEijBo1CvXq1UP37t2Dam/06NEYNWqU8jozMxM1a9ZE7969ER8fH6Jely6n04kFCxagV69ecDi8x25fatjf8GJ/w4v9DS/2N7zY3/Bif8OL/Q0v9je82N/wczqdGDhlIJAA/OH6A7/2/1XZl5WfhY2nNqJDcgfsPrcb85cWBjLJccno368/vvn5G2U+tg7XdMCSVUuUc/v17+c1FO9E1gnM/GOmaltu3Vy0q94O0fZoTN44GTc1ugktKrfAudxzmDZbvcAfUFTR1q17N0z/YzoA4G/r32hSswkqR1YO+jlUKlcJzgv6lTmdunTC7MWzAQBXN7sau3fs1j2uR88eKB9VHgCwZ80enDp8CpIkIS0tDUlJSQENuayTUAeHMg6ZOrZb124oOFCAs4fPouXVLdG/cX98/uPnAIDKsZVhyy4M127sf6NXH5YcWoKNazcCAJrWaooGCQ2wcNFCJCUl4Zp216B3vd6m+wxAua6eZjWaoX/H/gG1Z8Syz4ItG7ZAkiTYLXZUrlxZCdqa12+Oo/uPAgBu7X2r7jxrea48fPPzN6ptDas0RP9u6v79Pvd3OC4U/i7372+u7+UOl8OaNWsKz+nZHw6bA7/O/RUA0Lp5a+AwLqvvCH/k0Y/+lGrQlpiYCJvNhtOn1ZM9nj59GlWrVjU8z2q1okGDBgCAlJQU7Ny5ExMmTED37t2V806fPo1q1aqp2kxJSdFtLzIyEpGR3pMcOhyOMvOBkF1u98T+hhf7G17sb3ixv+HF/oYX+xte7G94sb/hxf6GV7ozHRUsFWC1WlX9fnPpm9h5Zif6nuuLTrU6wWotDM488MDhcMBqtSrbYEXRzwBsdpvXfFRWm1V1DABM3z4d07dPR8vKLbEldQv+OfUPasbXRJ3ydbyOBYqG4IltuSQXtp3Zpnu8WRecF4zPF+5Ndc8ax7OPIykuCUsOLsHyo8thtVqV/losFtP961GnB+pXqI8vNn5h6vjoiGhEOaJgtVohWSTlvQEK3yurtXCRg4gI7/nKYiJjlGMj7BGIcEQo/Y10RAb8OR6aMhTTtkxDhC3Ca764KEdUyH4voiOilefrsDhgsVpgvTjdfqfanbD+1Hrc1vQ21KtUT78BzecVKJz3Ta9/8nFm+x4VEaWcUyG2AjySp+gZX3y+l9t3hC9m76NUF0OIiIhAmzZtsGjRImWbx+PBokWLcO2115pux+PxKHOs1a1bF1WrVlW1mZmZiTVr1gTUJhEREREREV0Zdp7ZCQBYenipas4yefJ+cSVKbaiitxiA3kqcslMXiqY0Opp5FCuOrPDZt0BXMPUnx2k8/E28tx93/Gh43MtLXsaqo6vw7t/vFqsvVosVkXbvohcjNqtNWRzA6XaqJvB3ugvfK3EFUZG4gqjXYggG5/gyqPkgzLh1BrrV7ua1r075OgG3Z0Tsp3bV0dbVWuPrAV/jpsY3GZ4vLvQgC9WKoOICFFx1tEipDx0dNWoUhg4dirZt26J9+/Z4//33kZ2djWHDhgEAhgwZguTkZEyYMAFA4Xxqbdu2Rf369ZGfn4+5c+di2rRpmDRpEoDCNPqpp57Ca6+9hoYNG6Ju3bp4+eWXUb16dQwYMKC0bpOIiIiIiIhKmRiY6bFZbKo5y+TwRgwN8t35qnP0gjBf4Zg87M+sUAdtvmhDRF9+2PZDsa9ntVhVAZg/dqtdCXO+3/49Np/erOyTQx+9YAmAVwhktOpoIOIi45TPiKhP/T5BtadHu+pooPQ+83pDewP9XAJQhlMDhc9X/KxKkPz+vpVVpR603XHHHUhLS8OYMWNw6tQppKSkYN68ecpiBkeOHFGVOWZnZ2PkyJE4duwYoqOj0aRJE3z77be44447lGOee+45ZGdn48EHH0R6ejo6d+6MefPmISoqqsTvj4iIiIiIiEJjycElmLxhMl7u+jKaJjUFUDi/2p/7/0T3Ot1RKaZSsdq3WqyqsECuaBPlu9RBm9vjhiRJOJh+ELUSauFIxhE88+czhtcINDgryaAtM9/cHFSA76o9s7SBlz82iw0Oa1HwJFciAkXvlVF7YtBms9iKXdGmvS4AjGg1AsnxyYiLjAu6PS3xfgN5VjKLxYI3rnsD606swy+7fgGgX20mVgeaJQZtgLqvHsmjDHG90pR60AYAjz32GB577DHdfUuXLlW9fu211/Daa6/5bM9iseCVV17BK6+8EqouEhERERERUQBcHhfyXfmIjYgNWZvyUMXnFj6H2YMLJ+3/75r/Ys3xNVh1dBXe6fNOsdq3WW3qoO1itZJYAaQNFzySB//b8z98vuFzdKzREdvTtusGdDJxaKoZJRm0fbTuI9PHisMGg2WBJaBqMrvVrqrw0uuPUWjmq6ItmABLJla03dzk5qDbMaIdOmp2dVlRiyotYLVYlaBN7xkF2iYAtE9ujy82foEacTUK2xXey5L83F5qrsx4kYiIiIiIiMJq5JyRuPOnO5GVnxWyNitGV1R+loc5rjleuOrhnnN7it2+zaIO2tyS2ysw0Avaft71MwBg1bFVyMjP8HmNQAOIUFSOhUMogjarxRpQNZnNalMFZkbH6FFVtFltqusWZz6xUDwHX8QAzGEJflEB8bno3e/NjQtDwg7JHUy3WS2uGqYOmIoP+n3gtS/QQLksuSQq2oiIiIiIiKhsOXnhJABge9p2XFPjmpC0WSu+Fs7lngMAHMs8hnoVDFZaFCw/vByJMYloWL6h32O1QRtQWLEkbtPO0eaW3AENkQv10FGbxVYqYVwoAqZaCbVUoU9CZILPoNJutauGJ+oxXAzB7mMxhCDnaAP0hxeHkjikM5g52mTic9YL2m5pcgtaVG4R8EIOYvgtYkUbERERERERURgY/cEdzB/iYshlJug5mnEUb696G88vfL5wg5+52bVDR4HCyjlV0ObyXgwhkKAm0CF6/p5TlL105iIvbtB2Z/M70bdBX9Wz61izo89zbBYbLhRc8HmMmTnatENWQzV0NBzEz0txKu/8BW0WiwUNKzU0HJobKAZtREREREREdMXwSB5MWDEBP27/sUSupbXi8Arc9uNteHTOo8hx5phuS1wVU16EQKZX6XQ296zys5nJ3rWLIQCFFUviMDi9oaOBDH8MdUVbaQVtua7coM9tWLEh7m55N2xWG6Lt0cp2f4GX3WrHtTWv9fm8zczRpn3PihNg3d3ybgChXWlUVJyFGkT+grZQC2YV07KCQRsREREREdEVZsPJDVh1bBWmbZkWlvbFcEgvKNp8ejNcHheOZB7BgfMHTLcrBm1Oj1NV3RTtiPY6XgxXXB4XLH5K2oyGjopDM49lHlPtd3vcAQUXoV4MobSCNvG98KdRxUZomthUeS0Gak0Sm6Bzzc64vdntfoeFAkCd8nUw8/aZuKnRTbr7zczR5vK4VJVbxQmzUqqmYMatM/Bou0eDbsOXq6tejaaJTXFjwxuL1Y54j+LiHuFSMUp/SOmVgEEbERERERHRFUY7/DHUxGGFesGSuD+QIYhiv10eF87knFFea4fwrTi8omjIKLwr0fSYGTp6KOOQar9H8gQUtJWVirZAvNPnHVU/xaDNYrHg+c7PY8jVQwwr2qqVq4YmlZogxhEDAHDYHKpKOJFRaCZud3lcqtfFGToKAHGRcWELr+xWOyb2mogRrUYUq52Sqmh7qctL6N+gP66ve33YrnGp42IIREREREREV5hwV7SI4ZleUCRuC2SOK3GONrfHjWxntvI615WrCr0mrpqoOtfMUEe9irZ95/b5PCfQoC3QhQv8VcCVRND21b++wvDfhxerDdXiAwZhmNH8YO/1eQ8xjhjV51YO3XxdRySe65bcIVsM4XIhfkZDNRxVzzU1rsE1Na6B0xneuesuZaxoIyIiIiIiusL4G0IZiG2p2/Dtlm9VgZD4s17QJgZxZldtnLt3rmpFSqfH6VUNl+s0DtNyXbn+h47qVLS9+/e7Ps95/I/HceLCCZ/HBEuSJL9zXYU7aItxxCAxJrHY7YjBllGgZhSSOWwOr3DYKGgzE5q5PC7VtUpizrLSVtJztF3JWNFGRERERER0hQllRdvoRaMBABWjK6J/w/4A1OGZXpAmBnFmho6mZqdi0j+TvNrQVntlO7MRGxGr24aZoaN6iyH445bccLsCq1IzywOP3/4YDaEMFUmSQvJ5MVXRZjBHm14wZBi0majWcnlcqkAunBVelwrxfhm0hRefLhERERERkYEzOWfw5YYvcTLrZGl3pdjEVTfFyi4zq3GacTzzuPKzGIDpTZqvqmjTGToqSRKOZhxV+qYXkrk8Lq+QztcKptqho5n5mV5hnd7Q0VC4v9X9QZ0nQYLHU7oVbRLUn4/KMZXxTu93Am5HDNp8Va7p0QvCilvRJoZ6xZ2jrSQFW43KiraSw6dLRERERERk4PXlr+PX3b/ixcUvlnZXimX10dW4++e78eP2HwGoK9q0QUqwxHbEAEwvaBPnKdOrePth+w8YOXckJm+YXNhfnXDB5XF5nZtdkO11nEy7AMTdP9+NiX9NVLWhN3Q0FPo37B9UICZJUtgWQxBX4fTXB9GAJgNQp3ydgK9nJmgzM7+aLNIeqfwsBkdmQjPtYgiX0xxtwf6+MmgrOXy6REREREREBvadL5wIX1zd8nK0/uR6ZBVkYdqWaTiUfkgVXPmbbN8sMRASgza9FU79VbRN3zodADB7z2wAxlVxAVW06czfturYKlXbwQwdNcNmsRkOi/TFzNDRYIO2xGj9ede0oaY22LFZbaZDOpF4/0bBViDPSAyLasXXKmrb5NDRy6mKLRTE5xLuxVCudAzaiIiIiIiILhEZeRkhG8opEttMy05T7Qt0FUwz1/C32EGgc7TpteHyuLxCQnFVUq08d55uZZwY9JmpIAuG1WI1HBbpi0fy+H1/oh3BzdFmtMCBWCkGeFe0BVsNpVoMwSBQCyT8apbUDNfVuQ4PtH5A1Wcz1Wluj/uyDdpCMXSUwotPmoiIiIiI6BJwNO8ohv4+FG+seCPkbYthVq4rV/VHd6lXtJlYdVSv6k1v6KjecTKjxRDEijaPZFxB5rA6gqrkAoKvIJLgP/iLtEX63G+kYnRF3e3ae9RWtCXFJAV1PdXiA0YVbQGEkVaLFf937f/hX43/pa6WM1nRJv4OhCPcvtQwaCs5fNJERERERESCtOw0n0MQw2V1+moAwN/H/w5522Kwpb23UFVwBT1Hm49wzFcbekNH5ddbT2/1Ol67GIJyfSGs8xW02ay2YoUVZlY91fLVH1mwFW1GoZZX0HYxhPp3l3/jnhb3oHW11rrnDW4+GClxKUipkqJ/PROLD4jbYx36q8f6O89XRdvNjW8GAAxNGYoIWwTqRNdB40qNUTm2sulrXa4up3noLneXZ60kERERERFRGJzJOYPhvw9HtD0aP97+Y2l3J2RUFW2aucpCNXRUDITENg+cPwCP5FGFVGJ/zAwd1TtGL2hzepzIyMvQXbwiz6kfdIlBn1tyGwdtFluxFo4IJmgzU9EW7BxtNosN7/V5D6nZqZixdQYOZxwGAERY1UGbfP0ONTqgQ40Ohu11rNkRcYfj0OWaLth2dhsm/TMJFwouKPtNrToqhHFVYqvgQPoBU/cihoa+hoSOaD0Cd7e4G9GOaDidTtxd9W70v67/FTFnGSvaSg6fNBERERER0UV7zu4BYFz9dLkSg69cV646FNMMHd10ahMenP0gtqVuC+gaRnO0HUg/gK82fqU6NtCho2Yr2pxuJ87mntVtQy/oslqspoeOasPCQAVTOWgmaEuITAiqP1aLFQ0qNkDHmh1Vwy2DHR4rtxEXGYeutbsi2q6utFNVnRkM7xSrrqrFVTN97UCGjooVgBaL5YoI2QAGbSWJT5qIiIiIiOiichHllJ+DqUAqjuJUS/mjrWgzqj4DgJeXvIyTF05i9KLRPttLd6arthkNHQWA33b/pnothntmho4aLYagV9FmNOdcjst7OLDdale17fYYV7Rp57YLl6c6PKX8bGYxBKO51vwRQy3xvrRDSs1+LrUBl7ayTLUYgsGwVbHaMpDhnGaHjpYFNzS8AQDQrnq7gM4zM3cdhQaHjhIREREREV0kTiyfmZ+p2vfe6vfQuVZntEsO7A/c0pDjzMGLi16ER/IgOS4ZWflZqn1ieBLMYgjjl4/HoqOLcFXqVco2o8UQ9IRqMQS9OdqMgrJzuee8tnkkj9fQUV/PoySCthZVWiDaHo3sgmx44H+OtvJR5YO6jngv4s9mF1dIiklCWk7RCrbaZ6N9baairWq5qsrPgVTWicFdsItDXC7uaXEP2ia3RdOkpgGdJ1buXQmLP5QmVrQRERERERFdJIYaGXkZqn2LDy3GK8tfKeku6UrPS8fT85/G/H3zdffP3zcf+8/vx8H0g1h5dCX2nNuj7NMOHQ1mSOPW1MLFBv7c/6eyzWjoKOAdfoRrMQSn22l4P8cyj3lVZ7k8LuS7i1ZFPZh+ELN2zjLsR0kEbTZL0aILkuR/6GhshPlFA0TivYhVYGZX/hzTbQyql6uu257eazNztNVMqIlXe7yKT2/4FF1rdwUA1Emo47cv4tDRYOesu1zYrXa0qtaqWPcZzupZYtBGRERERESkEAOgjPwMH0eWrm+3fIs95/bgo3Uf6e73NdxQO3S0OKuOioGJR/LgZNZJbDi5wSsAS4xJVL0OdjGEhMgEDGg8QNmmN3TUqEIuIz8DeR7v4cD5rnydo/WVSNAmrG5qpqIt2D6JVWViG2YryeqUr4N3+ryjvNaGNzc2uhEA0LJySwDmgjYASKmaguT4ZNRKqIWpA6bivb7v+e2LGA7GOGJM9Z8oXDh0lIiIiIiI6CJfFW2XEu3KoVq+whevxRB8hHKSJCEzPxMJUfoT7ovX8UgePPi/BwEAfev3VR2nnUdMvL6poaMXj+mQ3AEVoisAMB46aqZCThTIXHzWENSqxDpike3MNr6GxVoUtPlYnKG4ijt0FFCHddp+9mvQDw0qNkCd8nUABDePmtn558S2y3pFG136WNFGRERERER0kSpoK+GKtlAO5/I18bnXYgg+5iSbtmUa7vnlHiw+uFh3/+JD+tt3n92tem2BemVH1RxtfoKxIxlHlKGjEbYIJVQRgzb5fp1up2ooqBlGQdvNjW/GqGtG4doa1yrbijPR/r0t7wUAPNnhSZ/H2Sw25ToSpKDm0DMihlCqoaOWwIeOyu1F2aNgs9i8QjGLxYJGlRopFXJiu74q2oIhDh0VVxUlKg2saCMiIiIiIrrocqhoW3poKZYfWe7zGF8VbTnOHNV8ar4q2mbumAkA+Gz9Z7iu7nU+ryk+O+1k6/I1FuxfgGWHlyHXVVSRJ68UWuAu0A1JHp37KPo36A+gMKzRC9qiHdG4UHAhpBVt0fZo9KjbA3Ur1MXqY6uRUiVFNfl/oAY1H4QbGt7gd041ceioBP9ztAHA+O7jsffsXny79Vufx0Xbo5X7NVp1NJCKNovFgum3TockSbBKvut4zA4dDYYY4kXbGbRR6WJFGxERERHRZUySJFwouFDa3SgzxFBDu+pooFYeWYn//v1f08GP2ZUA31n9jt9jfFVeeQ0dNVExJVagGfVTLxCSK6jk8z9Y+wE2n97s1faT857EoFmDDD/LxzKPASisXNIL2uTrOD1O3YUTfBFDP5EcPtUpXwffDPgGY7uPNRxuaZZeyPafXv/xuq48RNXs0NHW1Vrjjqvu8HucGEKJ/RcDTm1FW9NE36tbRtgiEGn3H86FNWi7ghZDoEsfgzYiIiIiosvYN5u/weCfBmPV0VWl3ZUyQQw1Ag1stN766y0sPLgQ8/bNC/hcs6GbkVDN0aYcI4RxRkMz9RY10AZtepxuJw5nHAYAbE/drntManYqAHVFm1tyF1W0XQyQXB6X7vuWHJdseH2jijaxnQrRFWC32lXPVS8sKh9V3vA6RhonNsaNDW9UXqtWHdWpaJMXgwCAO5qrw7Wnr30a1cpVM7yWGEKJw0XFxSrEiraEyAS80PkFk3fiWziDNrE9Dh31r7jfL+QbgzYiIiIiosvYrJ2zAACTN0wu5Z6UDWKoYWY1TDPO5JwpVj+C4WuOtgJ3gSpcE6/1/t/v654jHm8mmJLblEMbX1VzYnBnVI10KvsUAHVFW44zxytoc7r1K9pqJ9Q2vL7R/eQ4c7y2iUGbWEUlS4pJ8tr2zLXPGF5bLxC1WqxKRaJeRdv9re/H73f+js9v/Bx3t7hbta97ne74/KbPUTmmsu71jIaLikGbWNE25Oohphck8Ee1GIKPz2cwOHQ0MKGcD5K8cY42IiIiIqIyIFQVCrnOXJzJOYOaCTVD0t7lJtDVMM0wUzGm5fK4ijXxvr9hjeJwVjkEK3AXYNHBRX7bNgqmxCGY8h/yZiraxEUn/A37Eyvadp7Z6XXe2hNrcTD9oNd58ZHxhm3mu/Qr9PSGlPqraKscWxl7z+1VXt/U6CZ0q9PN8Np6bVgslqJVR+FRfX461uioHFMtzrhyzYhqAQSr/4q2UAZiJTV0lBVtVNpY0UZEREREVAYUtwJKNnLuSIycOxK7zuwKSXuXG1XQFuCk+kaCqYwLVTWdEbGKTA5yzA6VDaQCzEzQJs6FZ7FYDI8D1KuOisRwRW/BAqvFahi2Gc3R5q+iTS8I7d+wv+q1vwBcrypOvI44dLR/g/6mh3EaVSyJwZl4L2IlnlgdFsw8dEbCGbSJnxvO0UaljUEbEREREVEZEKqgTR7muPro6pC0d7kJdOjoltNblIn6jZhZbABQhyPFDdr8VdGJVVxy/8wGi2Yq2uQ25eqorIIsPL/geb9t+/scO6wO3Sorf8MFbVYb4iLidPcZ3o/Td0WbXgglL5wg83s/Nj9Bm1QUtDlsDr9BpMwoaFMFhQZztInhX7iCtuJUa+oRf18YtFFp49BRIiIiIqIyINRz7pT2HD6Z+ZmQJAkJUQklel0xFPM3dPRoxlG8tPglAMDswbNV+8RKJrOhmfjMgxluKvIX8IgVbfKxZofKmqloK/AUVsfJq1FmO7Ox48wOv22bCab0wil/4YrVYjUM2vQCNcB/RZsem8WG+GjjYapa/ira1metR9yJOFPXNsMoKKwQXaGoT8LzDWUgJt5rqCvaxN+xULdNFChWtBERERERlQFlaRW5AncB7v75bjwy55GwD6HUCqSiTW8uMJkYlBmFZr/t+g0jfh+hrKgpHlfsijY/VXSqijYpNBVt4nZ5GGqg1UUfrvkQB84fMNwvLoYg8jcvl9ViRbmIcrr7jFZR7V6nu247ys86f05r++YvsDYKheTr7M7ejSOZRwAENl+a0feB0dBXq8WKZzs+ixGtRqhWLQ1lRZt4vXAGbUSljUEbEREREVEZEKqho7LSDO52phVOcp9VkGVYbRQuYjDiL3jy9YzEc41CgC82foHT2acxbfM0AMEHbfP2zfPqi9HnIcIWASA8FW2iYIO2Y1nH8OS8Jw33O2xBDh212BAXWVTRlhyXrARvenO03dz4ZtzU+Cav7WLwpDeMU1sB5u/3yF/Q5m+bEcM52gxWHQWArrW74uYmNxsOLy2usM7RBnNDaolKAoM2IiIiIqIyoCwNHd2aulX5OVQrf8ryXfl4ffnrWHhgoe7+QCrafD0jsd/+2pEDNlUVnMl53QDg43UfY92JdbptasmBVDjmaBMFG7T547A6dD8TgQ4d/fTGT5XKLb37aVe9nd+wS29/oMGUv6Gj/rYFykyIJgaIoaxoE+81lAEeAPSs1xM14mpgYNOBIW23rCpLFdCXIgZtRERERERlQKgr2kqTuOLpwgML8e7qd0O2Auj/9vwPfx//G/9d81/d/QEFbT7+WBVX8BRDLT1ymOGG+fnhtA6lH1K9Nvo8yIGU2D85lDNbRWcmaJOvLy+GoCeYsCXKHqUbTpkZOqqdo02+vt79yJV/eu0YsVlsXlVuRmGsvPhAx5odDdvy2hbAfGlGn8121dspPxvdi78wMVhiFZvZRR3Mio2IxaQbJ2FoytCQtlvW3NLkFsQ6YnFbs9tKuytlGmcJJCIiIiIqAy7FoC3flY/jWcdRt3zdgP6wFoOPaVsKh1U2rNhQdyhfoM7nnfe5X3yOgYRdHsmjCiXEYFBvaKJIDlXckhv2i3+iBVLRJl9fpHe+zWLTHTqqVLSZvF9/waEoNiLWcF+ELcLvs9FrLzkuGS0rt8SW1C3Kdn8VbTarDR2TO+I9vIc6CXUA+B6+6G81UO3P8jW0jAKvd3q/g62nt6JTrU6Fx2kCuVAPHX21x6twe9xoktgEn/zziWF/tdcJ5WII4vNmRVXpGN5qOO5LuS+kASp549MlIiIiIioDQv2Hayjae2nxS3hy3pNYcWRFsa+dnpde7P4AJoZxeszPkyaGGd9u+VZ3MQDAeFVLmVLRVozFELTBml7warPalGowMSybtWMWPl//uarPvgTStwpRFQz3ySuSBiLGEQOLxYIhVw9Rbfc3R5vVYkW1ctXwVK2nMLHnRAC+g7ZgKtr0GFW0VYyuiG51uhn2QW/ob0BBm+Z3qFJ0JbSp3kZ1X0btifOdhauijUoPQ7bw4yediIiIiKgMuBTnaNt9djcAYP6++ehau2uJXtuIv5DITEWbJEleFXozd8yE0+3E/a3vxwdrPlANf81x5vi8pvyHr79hq1n5WYZ90gYzekGNw+pQKrXEirZT2acwe89sn8M8gcL7/n337/h++/c+jxNViDYO2iKs+mGWL7GOwgo5bcWZv6GjctVgOXs5JWzyWdFmYu60UAYW2sn89cLZ4lxP/p0S79lo6G647tFqsSLGEYMcZw6qlKsSsnaJLjUM2oiIiIiIyoBLceioLNDgTO9e5GBr7t65qBJbBW2qtzE839d8boEEbUbHSpBggcWramj32d3IceZgwYEFqu15bt9zmsnD81xS0fW015YkCXf9fJdhG8WpaJOdyTnjs59uyY0vNn7h8xitUFe0ySGZNgjzFxLqLlzgY1ikUUWbGE5pwzG9lS+D/b3UC2cDGU6s/Z2TP6sWiwURtggUuAtMzdEWykULLBYLpt0yDR7JY/h8icoC1gwSEREREZUBl+LQ0WDbMjp+37l9mPTPJIxbNs7wvF1nduHOn+7E15u/hiRJOHD+gGpIZCiCNvkYbYgiSZJusCJWJx3PPI4ft/+oCrqUijYYX9tfYPPzrp+x5tga5bVeKGO32pVKsAKP9zDRrIIsn9fwNwRWT/mo8ob77FZ7wBVTcuCqrUYrF1HO53l6oVpxh45q+14xuqLX8S2rtPTZLyM5Lu+gzV8QKhrRaoTqtRi8yfdW0oshyNcO9Uq0RJcaVrQREREREZUBoRhuGa4JygOt6tE7XpIknM056/O88cvGY/3J9QCAX3f/ig5SB0xeMBmtq7XGq9e9CiCwoM3fMdrhmRIk3YDL6XEqiyW8tPglnM09i9MXTiv7zczRpjcUVOu1Fa9h9uDZhvchSZLPirbM/Eyf7fvbrycuMg52q133uRe4C2C32k3PDSfSDh31F7TpBUbFXQxBq3JsZeXnL//1Jfac3YNONTv57JesV/1e+N/e/6FZYjMA+qFmWk6aqbYAoEfdHmhVrRXu/eVer31y0GZU0ScOiw7lYghEVwoGbUREREREBEAd5oRynrRA29I7vsBd4HflUjlkk63LWAeUBzad3qRsC2XQpjdE1aj9AncBouxROJtbGBYuPLhQ2SeuOirTBmu+hsPq0Qvmzued152jTSb3zcgP238IqA/R9mjYrXbYLDa44P1cjmcdD7q6STt0NC4yDldXuRqbT2/WPV5vCGSo52gTg7bKsZVVr/2pV6Eept0yDXERcQDU8wOWiyiHHFcOmiY2Nd0eoK4mrBJbNCeafG+lUdFGdCXgbw0REREREQFQDzcMZXVbKCra8lx5qjmwzLSZ6S6qwNqZthNAaII2+TnptWXUvraCTLyO1WKFR/KoAkZtsGamos2ofZEcsuhVkZ3LPeezzSWHlgTUBzk00gu0ouxRuKXJLUGvRCmeZ4EFVosVT3R4wvD4QCvazFR7aYPfpJgkw/bMKB9VXve67/d+H0+0fwI3N7k54Da/u+07fDPgG9ViEa2rtUaFqAqonVBb9xwGbUTFw4o2IiIiIiICEHiYEy6685y5clXBhsvj8juheo47B+VQOKTwuYXPoUutLjiccVh1HW2QEEhFm96CBUZB25bTW5DvzkdiTKLXXFtWi9XvUFF/AaGW0cT5RkMiwyEu0jhom37rdETYIrD44OKg2hbvQw6nAg2FijvRv/Z6tRJqFas9I4kxiehVv1dQ5+oNqR3ZbiQeafuIYYWoGGiHcjEEoisFgzYiIiIiIgKgqWgL4dDRQCva9KrptBVtTrcz4JULVxxZoXqtF9YVK2iDpBryJ5q4aqJhe1aL1auCTdt2oEGbv4q2kiBXtOlVafmbJ8wfMbyTw6BAgzaj0DEhMiHg/vSu1xsda3YM+Dx/9FYyDUm7PoZhs6KNqHhK/bfm448/Rp06dRAVFYUOHTpg7dq1hsdOnjwZXbp0QYUKFVChQgX07NnT6/jTp0/jvvvuQ/Xq1RETE4O+ffti79694b4NIiIiIqLLnmqOthJYdfRk1kn8sO0HZBdkq4/XCfm0k8O7PC443U6sO74uqNUw5Ta0TA0dlQIfOuqPds40rwo3gwo1I9qKuErRlXB3i7tLtKItxhEDALBbfAzRDLJiSi8MCjhoMwgd61eoH3AfHu/wuN85BANRM74mAKBpbGDzsoUCF0MgKp5SDdp++OEHjBo1CmPHjsWGDRtw9dVXo0+fPkhNTdU9funSpRg8eDCWLFmC1atXo2bNmujduzeOHz8OoPAf4AMGDMCBAwfw22+/YePGjahduzZ69uyJ7Oxs3TaJiIiIiKiQGOYEGxjpMQqvRv05Ct9u/RaTN0z2e3yeK08VHjk9Tnyz+Ru8svwVvL3q7aD6pRdemRk+a1TRtvfcXvzf/P8LuB8eyYNcl3eQ6Ou12T4CwHt93sOUm6fgzqvuLNGKNjmk8TUXWiBztN3Q8Aaf1wk0aIuNiNXd3rxyc1Pnh6vaDABe7fEqhqcMR//E/mG7hhEx/GRFG1HgSvW35t1338UDDzyAYcOGoVmzZvj0008RExODr776Svf46dOnY+TIkUhJSUGTJk3wxRdfwOPxYNGiRQCAvXv34u+//8akSZPQrl07NG7cGJMmTUJubi6+++67krw1IiIiIrpMLDqwCOuOryvtbvgVygozI75WvSwOo2GoFwouAAC2p25XH69zr7muXFXY5HQ78b+9/wMArDsR3PunN8yzOENHg+WW3F5VfV9u/BLfb/teeR1s0HZ/q/vRoGIDpUqpJCva5MBGWxU1rts45WczQU6bam0wrts43N/qfp/XCTQU0g4RvbnxzWhVtRVubmxu0YFQVrBpVYqphH81+heibMGtylocqgUfwhgmEpVVpTZHW0FBAdavX4/Ro0cr26xWK3r27InVq1ebaiMnJwdOpxMVK1YEAOTnF5ZbR0UVfRlZrVZERkZi5cqVGDFihG47+fn5yrkAkJlZuDqR0+mE0xnYMtqXKvk+Lpf7YX/Di/0NL/Y3vNjf8GJ/w4v9Da9g+nvywkm8u/pdAMCvg34NR7cMBdLfrPwsPL3waXSq0QlDrx6q2ufxFAVDZu8935WPhQcXon319kiKLVopMa8gT2mvwFWgai+Y5yu35Xa7dc+T91thVe13eVyq+wKAnIIc5BfkK9tzC3Lh8XiU106nU3WOHNZJkuTVlnK/+Xlw2tX9crqchscr5xXkwRnhRL4z3++xZjhdTmTmZnr1d9rmabi10a2wWCzK/fpty+nEhpMbsOhAYTGCx+1RPVuLZAlJn808X0iF/bHCqhwzqNkgtExqqfRJ3GfEbrGjZVJLwKMOR+XzLLDA6XTC7XIbtuVyu7w+w9G2aNXxtzW+rXDxAMn4c+52F11D+/kLtdL6Dhafo8vlMn39K+GfGaWJ/S19Zu+l1IK2M2fOwO12o0qVKqrtVapUwa5du0y18fzzz6N69ero2bMnAKBJkyaoVasWRo8ejc8++wyxsbF47733cOzYMZw8edKwnQkTJmD8+PFe2//880/ExMQEcFeXvgULFpR2FwLC/oYX+xte7G94sb/hxf6GF/sbXoH091jeMWXakrlz54arSz6Z6e+yc8uwLX0bth3chqTjSap94rQrZu9hwdkFWJOxBtHWaDxd52ll+9mCs0p727O3Y+457/bMPl9Jkor6lq7fN6P9R48eRZY7S3VsljULf2X/hdS0wnMWLFqAU6dOwYPCQGDu3Lm6U9CkpaUZ9nH+wvmo6Kio2rblzBakZupPZSNbuHAhKkVUwua0zUjN8n2sGZvzNiM9Oh0AcO7MOVU14W9zfkOENUL1WfVl9pzZmHBwgvJ64/qNsO0rqijbkr4FqeeK32eZr+e7O3c35p6Zi6PHjyI1v/CaW51bMfeI8F4fO4rUAt/92Zu9F3PTjT8/efY8zJ07FwWeAsNntHbtWrh2FVYFyp/hI7lHVMcv/HMhIqy+F9jYmboTqRcKz0nMTkRqdvi/P0r6OzjXnas8l4ULFyLeHh/Q+WX5nxmXAva39OTk5Jg67rJddfTNN9/E999/j6VLlyoVbA6HAz///DPuv/9+VKxYETabDT179kS/fv18ltqPHj0ao0aNUl5nZmYq87/Fxwf2pXKpcjqdWLBgAXr16gWHo+TKxYPF/oYX+xte7G94sb/hxf6GF/sbXsH0d/fZ3Zi7qPAP5H79+oV1KJhWIP09s+UMdu/aDQDo3189Z9PnP36u/KzdZ+SPeX+gcmRl5RyXx4XzueeR68rFT/N/AgAkVkyEpY4F3Wt3R7QjOuDn6/K4MHlW4dxrNeNron9f777JfW9YsSH69yzaP/P3mTifd151rN1qR5s2bbB6XeHol05dO+F/i/+nDJHs37+/6llIkoS0tDQkJSUZvq/denRTJp2XHVl/BEf2H/F5b92v646a8TWxZ80enDh8wuexZjSr3wy142sD84Hrm1+PM7lncCzrGACg83WdkRiTiG2p2zB3qf8w5/re1+PLX75UXrdv0x596/ctOmAfsGXDFlP9iouIQ1ZBlu4+M8+3Zf2W6N+mP5YvXg7XmcKQq02LNujftOi9XrJwCTznvKvQ7Fa7Mly2cc3G6H+t8eenSmwV9O/fHwXuAnz909e6fWnXph2uq3Wd6jN8NPMo5s2bpxxzY/8b/c4Zt2fNHpw+fBoAMPGmifhw3Yfo36A/2lVv5/O8YJTWd3BWfham/TYNANC7V29UjK7o54xCV8I/M0oT+1v65NGP/pRa0JaYmAibzYbTp0+rtp8+fRpVq1b1ee5//vMfvPnmm1i4cCFatmyp2temTRts2rQJGRkZKCgoQFJSEjp06IC2bdsathcZGYnIyEiv7Q6Ho8x8IGSX2z2xv+HF/oYX+xte7G94sb/hxf6GVyD9jXREwmq9uGKh3RrQxOyy33b9htPZp/FA6weCCuq0/Z25fSYSYxLRo24PZZvFalH6qb03ebvePiMR9ghVe68sfgWbTm/CiFYjlO370vdh36Z92Je+D6OuLfqP0mafr9vlVtqyWCy658j7I+wR6v0W9X0BgAceFHgKirZbC9uV5+VyOByqc5RhhRaLV1vK9W1Wr36Jz9qIzWaDw+GAZJH8HmuGxWpBgVQAAIiLisP/dfo/DPttGAAgX8qHw+GAxea/XwAgWdV9inREqu4xOiLadJ8ddgesLv1jzTzfCEfh+xphK/q8RTmiVP0RP4uiSHskPK7Cazhs+p855TN8cb+vZ2S325U25M9wpdhKyvEVoiogOjJa91yRzWZTzqkSXwWvXf+a33OKq6S/g6NR9BmJiYwJ+Npl+Z8ZlwL2t/SYvY9SWwwhIiICbdq0URYyAKAsbHDttdcanjdx4kS8+uqrmDdvns/wLCEhAUlJSdi7dy/++ecf3HyzuQktiYiIiOjKIU6errcCpRlfbPwCs/fMxp6ze4rdn0Pph/DNlm/w7t/vqrabmaA/ENpAcdPpTQCA33f/7nXsX0f/Cuoa4vPUWwyhwF2g/KxdCdNo8YT0vHTlZ+3iAEcyfFeh6RHbcHvcWHt8reoaRsKxGEKOs3BIUow9BokxiagRVwMAcD73PF5b/hpmbp9pqi3xuQLeCwQEsuqouPpkr3q9DI9LiExArMN7BU/5fPHzpu2PeA1RhM33EE5VGxcXWzBqy0i5iHLKzxWiKgR0blkW7YjGfVffhyEthyAuMq60u0N02SnVoaOjRo3C0KFD0bZtW7Rv3x7vv/8+srOzMWxY4X+9GTJkCJKTkzFhQuEcA2+99RbGjBmDGTNmoE6dOjh16hQAoFy5cihXrvBLcubMmUhKSkKtWrWwdetWPPnkkxgwYAB69+5dOjdJRERERJcsVdBWzFU25RU0iyMzX39YSriDNplL8g6Ogg2TxPP0+i8+L20loNG0L2KY6XQ7VYHco3MfLVYf5+ydg8kbJps6L5CgzQKLYXAoticHbbERhYFVXGQckAUsPLAQa46vMdUvoHChC5E2fNKuAOqLeO7j7R+HzWLDvP3zvI67vdntmL9/PrKd6pVT5c9ZpL1o9JD2+kb9EVdH9beaqNxP7efoxc4v4o2VbxifJ1y7fFR5n9e40tzW7LbS7gLRZatUg7Y77rgDaWlpGDNmDE6dOoWUlBTMmzdPWSDhyJEjqtLfSZMmoaCgAAMHDlS1M3bsWIwbNw4AcPLkSYwaNQqnT59GtWrVMGTIELz88ssldk9EREREdPkQ/zAPtqJNFuowTJIkpX9m+yae44tR5Y/TrbMyaJD3JYZQeoFUdkFRKKOtwtJeUw6rtqQWzS0mrj4ZLLFfq4+uNn2eHMrqPS+tchHlDOc5k4lBW7Q9WjkPgKkKOwCoGF0R53LPeT0XbUgVyPBoMYiyWCwY2W4kTmefxsZTG72uofeZks8Xq9O01zcK0eyWouP8faaN2mhTvY3P80QJUQmmjyUi8qXUF0N47LHH8Nhjj+nuW7p0qer1oUOH/Lb3xBNP4IknnghBz4iIiIjoShJMRZtYeRWqYYQyt+RWwgazffNIHlPD5wwr2kJ4D2Jb2iANgKr6SVuFpQ3aaiXUwuGMw4btB0sMMMWqK6Aw6DKqUgykos1M0Ob2uFHgKnxGMY4YAIULEQBAvjvf8DxRpK2w/14VbZqKsUCCNm2AZbFYkBiT6HWczWrTDbvkz6IYtJkd3ilWtFngO2gzqorzVwkHAJ1rdsbKoytxW1NWcBFRaJTaHG1ERERERKWtuEGZGIAFEtT9b8//8MjcR5DuTAcApGWn4f7f7sevu34tak8IgcxWtJntg1EwUdzhsyJ/FW1iiHUg/QCe+OMJpapMO9Sycmxlr/PNVJMF0kftnGBNKjUxPC/QoM0f1dBRhzB0FIUr45oh99/fHG2BzGOmF8rpbbNarLqfKXmbHAKK2/wR55LzV9FWK6GW7nbxXo2Ghj7T8Rl8e8u3qF2+tql+ERH5w6CNiIiIiK5YYqATzBDJYMIwAPhs/Wc4eeEkFp5bCAD4ZvM3SM1JxboT65RjVBP1CwGY0fxl2nN8MapqCkV4pdcX3Yq2AvV8XgfTDyrzaWnfC7m6S2S20stsH7VBW+PExobnhSNoy3XlAiiqaAtkMQDx+A/WfKDarg3WxEoxALiz+Z14pO0jum3qhXJ6nx2bxaY/dPTiNtUcbZrjjD7P2n7qmdhzInrX6437W92vu99iseD5Ts/jlia3oENyB91jbFYbh40SUUgxaCMiIiKiK5YY6BS3oq045+udq10RUyaGg9qQwmzYJ4YlYhv+Ju33J9eZq4R14rNxepxefdUL3/T6VCW2im4VlNHCEYEQ+6gNthIiE3B3i7vRvXZ3r/NCHbS5JTfO5p4FAMRHxgMAouxRfs8TyZVrqTmputtl2qCrelx19G/YXzfY061S0wnUjCra5M+ZauioyYq2+hXqK1Vtbarpz7XWNKkpHu/wuM+VMTvX6ozhrYabmruQiCgUSn2ONiIiIiKi0iIGOsEshqCqaAti2KUc2OgFXGJ72kBQDi601/QX/OQ4c7A9dbvqvotbGZbrzMVn6z9D2+ptMfGviahTvg4+6PeBV3Wcy+NSVSn5WsxAfh5juo5Bs6Rm+GTdJ17HZOX7nvfMDPF5icMbgcLw6M6r7kSeKw9LDy9V7ZPfDzMLMshDQX3JdebiTM4ZAIXBFwD0a9AP07ZM83uu7GjmUd3t/hZDkAMou9XuFX6arWgLZDEEr4o2nc9+clwyhlw9BHdcdQf2n9uPttXbeh1DRHSpYtBGRERERGH1z4l/8NeRv/BQ24cCrtIJNzHAKk5QBgRX0SaHDHrD58T2VP30uAGb93bA/z28uuxVbEvbptpmNOG/WbN2zMKig4uw6OAiAIVDQPX64vQ4VUGbr+clB5j1K9ZHbEQs8lx5Xsf4W2DADLEP2qGKckClNxG/3D8z73nF6Iq623vW7YmFBwuHDh/POg4AiLJGKcNk4yLjMPiqwfhu23d+rwFAmeNNS1tBpn0t36dRpZqWUdDmazGEQOdoG9luJGIjYhGLWFRM1n9+RESXKg4dJSIiIqKwGr9sPBYeXIifd/5c2l3x4hVgBUg1PDKI+c2UoE2vos2gWs4ogNPu06MN2YDiD8FMy0nz2uaRPF59OZqhrrjSe95yiCM/Dznk6tOgj9exoahok/uQXZCNIxlHVPuUoE1nyGEgQ0eNJtm/L+U+9K7XGwCUYaMVHRVV14u2R/ttX1a/Qn3d7f4q2uT9enOi6d27XlDmb+hooHO0mVktlIjoUsVvMCIiIiIqEWdzzpZ2F7yIAVdxK9r05hxzeVzYe3av4YTvvuZEM1q1U+7nxpMb8eyfz6rOCSYsLG5Fm16Fk9Pt9AqhXlvxGlYdXaU8C71hl/GR8apnJQcu7aq3w8CmA1XHZjvViykE41jmMaRmp2LE7BFYf3K9ap98bb3QR37fzfShdoJ+0BZhi8DVVa9WbavoUFdvRTvMB22jO4/WrRjVBltGQZvefepV8wVS0SZvC3SOtkBWRiUiutQwaCMiIiKiEmF2EvSSVOyKNuEcvaDtnVXvYNSfozBzx0zd8+VQyd/QUbFteft7f7+HQxmHDM8xq7gVbfKE9aICd4HSFzlkSc9Lx4SVE7D2+FoA+n21WWyq8FGsKmtUqZHq2FxnbrH6DQA/7/oZ9/9+v27YKH9e9QKk1cdW458T/+gOadUyWgzBZrV5tZ3oSFS9llcgNaNKuSp4qM1DXtv9LYYg79f7DOpWtBkthuBjPjcxaDNa8dZXn4mILif8BiMiIiKiEnEpVqmoFkMIoqJNPEcvaFt5dCUAGA6b9TV01Chok8O9XJd30KR3D3vP7sXYJWNxKP2Qbh+KW9GmF6A6PUUVbdohjf+c+KewrzrBZr47XxV+ikGPdlVMoznJQsXXHG2LDi7C+GXjvbYnxyV7bdNbzVNuXxso1Y5WV78FMnQU0J8PTvv+GM1Fp/cZ1Lt3o8o13RVKrTpztJlYDOFSDOWJiMxi0EZEREREJaK4fzwXuAvw5/4/ldUZQ0H8Iz+YajB/FW0yvcogAPDAo7sdMA7xzCwiIJr410RsOLUBzy14Tvec4s515m/oqN1qR52EOsq+E1knCo8Rho5WjqkMoPA+xfBTDHrEeb6AoqBRL9wKBbGaTi9w0jPphkle2xw2B65JvsZru81iU4VOEbYIVI+srjrG7NDRe1rcA0A/aPNX0Sbfm9HwZjMMVx2VF0MQ3jttfzhHGxGVNfwGIyIiIqISUdw/nr/b+h0+XPshnv7z6RD1KLSLIfgM2gyCmmCGjvqqvNMujgAA5/LOAdCvgAOA1OxUw/bM0AvaxKGjdqsdo64dpQyD3HuucM46ef+gZoPwdu+3AQD5LnVFm/iZEauigKKKtsSYRIzuPLpY96BHvLZRUKplNNTymY7PoHGlxkXHwQKLxaK6Rq34Wl5hlZmho29c9wYGNR8EQL8CzuwcbboVbSbv22a1+VwMIdCho5di9SsRkVkM2oiIiIioRBT3j2d5yOG53HOh6A6A4g8d9bcYgswosPC1GIIY/OW785Wf5YBKL1TT21a9XHWvbaJ5++f53A/4rnbSCyidHqey3W61o26Fupg6YCqAwsAv352v3IfNalNCNAmS6jn6Gjoqv18OqwMda3b0ew+BClVVlcViQaQ9Ei0qt1C26c3/FmH3HmJqZuhovQr1lOekVwFndtVR3TnaTFby+VsMQTV01ERlKyvaiOhyxm8wIiIiIioRl+Ifz+FeDEFmWNFmco42p7tomKV8Tb0hpHphYfmo8ob9MqvAXWC4+IDe6qEF7gJluxzsiEGr2+NWVbyJIZq4wIAqiDKY60w751ioiNf2FTQ2S2yGWEcsHm33qOn25Gchhk4RVp2gzcTQUbFd3Yo2TbClfR2KijajoE2voo1ztBFRWXfp/dsOEREREZVJxQ3azP7RHwhV0BbGijaje/cV4IhBmljR5pbc8Ege3eo1MfjLyMvAplObTK2M6c+UTVMw+JfBOJR7yGufGALKCtwFSl/kYEV8Bh7Jo9yfw+qA3WpXwkijoE07R5tMb9XTUFAFbT4qD6+pcQ2+u+079G3Q12d7YnikW9GmEySaqWgTfy/0QkftZyxcFW16lMUQ7MYVbZfbHG03NLwBANCqaqtS7gkRXar8D5AnIiIiIgqSGAYVt0rF7B/9gRADlLDO0WYQErokF7ambtUNq+S2JUnyWgxB73hA/bwf++MxpOel++y/WXP2zgEA/Hn2T4zESNU+vfsWF0OQwx+joM1mtSnDK/NceaqgTXzPi1PRZoFF9V4nxyXjmhrX4KedPxmeYzbsibJHqd7fWEcssp3ZXseJlVxKRZuwTS9INLpn2S1NbkGUPcrnMdoA2Wqxqp6H3He94Fbvc2s0D51eYCbfn3gf2t9j3Yq2S3iOtsaJjTHtlmmIj4wv7a4Q0SXq0v1PBURERER02RMDoeL+8RyqirZZO2bh4f89jHO554o9R5vZoaNGoc0Z5xm8vPRlbDq9yWufHES5PC6vIa56wzUB9T2EKmQT6YWdRkNHlSDt4vsurt7pltyqOdyAojBGrN4zNXTUREWbNoyrEFUB96Xchy61uhieYzZo0wZkk26YhGrlqnkdJwbNctuq+9MZOurvMz+81XC//dMLkMWqNvn98VW154/VYtU9X76OOEebmd+zS7miDSgcjn2p95GISg+/HYiIiIgobMQQ5lKpaJu6eSqOZx3H15u+LrFVR4Mh90e7WqjL49Kdn008J1zSXenILlBXa+lV1zk9TtUcbDL5M+CRPMpnQw7K5CDNaC44o0DNTEWbdrikHGD5WtXTbJCiDQArRFfQHVaoqmgzOXQUAF7p/goea/eYqb7oSYpN8u6L8LsoPwu9irRbmtwCAOiQ3MHnNfwNHRXvzUwwyjnaiOhyxqCNiIiIiMJGDISKG5SFeo62Q+mH1ENHizlHW747H4sOLMK8fd6reFqD+Ndu+dlp51hzS27DoaPB3EMg8j35eOrPp1Tb/FW0iUGYHMhoh44CRVVP8v1aYFG950bvvzZE06OtppQ/i77mQDNbgSlWa8n+1fhfAICutboq2/wuhmAQtLWq1gp9GvQx1Retj/p9pDvEUQy7fC2GcHXVqzF1wFS82OVFZZve77HVYvU5dNRisWBEqxG4s/mdqFKuiuoY+Vlp2yMiulxxjjYiIiIiChsxENKbAyoQoZ6j7eSFk6o+GVWJ+SJWkOW58vD+mvcBFE6QL672GUxI6JbcKHAXYM6eOartLo/LcOhocZ+xGWk5aarXRoshaIeOAkUBitvjPXRUG7SZDVvMVEiFs6JNb2615PhkzLx9piqEUy2GoLNAhL/KvOc7PY/5++brDjM2Urt8bd3tesNYjRbmqBhd0e91bFabz6GjAHBzk5t1z+1cqzPqlq+LPWf34N2/31X1iYjocsRvMCIiIiIKGzEQKnbQJoRVz/z5TFDBmCjPlRfU0FFJkpCanQrAeNXRHGcOft/9u/I6mODA6Xbim83f4OddP6u2uz3GFW2Z+ZnYeHKj6WdtphpMz/nc8ziTcwZA0X23qdYG7au3V/ouV9fpzQcmDh3VztG288xOAL7DyUrRlZSfjQIqcZEAr6DtYmjrK9wyHbTpVLTJ1xfvQW/oqGoxBIN2ZJ1rdcar171qqk/+iM/DV0WbnsaJjb22GT0rs88wOT5ZN4gkIrocsaKNiIiIiMJGDMNCWdG2++xu7DqzC1dVvirgdiJtkcqE+z9s+0HZbnbY5af/fIq5++bi8faPo1xEOWW7GCqmZqdi8obJun03yy25sfTQUq/tviraJv0zCQDwSNtHTF0j0hYZVGA55NchAIDvb/te6ctNjW7CX0f/AlAYvslhoF6oIw4dlfdnFWQBABYcWKA6VjT5pslIy07D/P3zsezwMgDGFW1icGUUKGbmZ/q9V3/0Ktr0+F0Mwc8Ko2ZpV1jV7YsQZMnPxqiiTatRpUZ4/brXYZWsGPbdMADGQ0eDDXJZ0UZElzN+gxERERFR2BR36KgkSVh/Yj0y8jK8KpzMDBnUIwYjRzKPKD+brWibu28uAODrTV8brjqqDXCCGTpquOCBjznaZCsOrzB1jWiH8RxlZhxKP6T0xWFzKO9JgbtAv6LtYtikt+pow4oNVW3rhZNVy1VFiyotEOuIVbYFVdF28f3Qm79MJq5+6ovZgExV0aYzdNRsO00qNQEA1CtfT3d/oItDyGFxIKuOtqzSUrWyqlG4F8iiBmJQx8UQiOhyFtR/YkhPT8esWbOwf/9+PPvss6hYsSI2bNiAKlWqIDk5OdR9JCIiIqLLhCRJcEtu5Q/54g4dXXBgAT5c+yGqxFbxmivKbCWRlq8AKxAeyaM6R7w/bRAWVEWbx60b0OW58jBl0xSf52orguxWu+59R9mivLYFIi0nTbV6qBwWiauO6lVy6Q0dHdZqGJwep1IV5yucFOdWC6aiTX4/bmh4A05mncSFggtYdWyV6hjtIhRG/A35lKkWQ7DqL4aQD//h3ktdX8K8ffPQu35v3f0Oq8PvCrji51MJ2oSga2TbkWia1NRnG9rPmK/FEALFijYiupwF/A22ZcsWNGrUCG+99Rb+85//ID09HQDw888/Y/To0aHuHxERERFdRsYvG48hvwxBjjMHQOAVbX8d+QuvLnsVFwouAIAydPJ09mmv880OddMyDNqE6jQz1W0eyWN4nDakCbaiTS9w+H3378o8ZmaJCzOIxKqvYBzPPF4UtNmKgjbVqqNCECYHL26P22voaMXoirilyS3Ksb7CltiIooo2o0owMxVt0Y5oPN7hcbRPbu91fq2EWobXF5muaPOzGILZdspHlcedV91puEiBmeGaua5c5Wf5/REr0vo17Ic65ev4bMNMGBbs0NFQL3xCRFSSAg7aRo0ahfvuuw979+5FVFTRP7z69++P5cuXh7RzRERERHR5WX9yPbIKsrD+xHoAgc/R9uZfb2LtibWYsXUGAHVgpa0SC7QCDSgM54yGXcp9/WHbDxg4cyAOnD/gsy2P5DG8JzHIAIILDjad2qQbJp68cNLvudphfAmRCbrHmQna6iTUQf8G/dG6amuvfSeyTijVUw6rQxm26HT7r2jTDh0V92t/1lJVtBkMlYywFwVX/gIfMeT6T6//4MN+H6JybGWf58hMz9FWzMUQzHq247OwWqx4qM1DhseIw2Ll0PH+VvcDAAY0HmDqOl4VbcUcOioKJpgmIrpUBPyfGNatW4fPPvvMa3tycjJOnToVkk4RERERUdkQ7NDR87nnAQC5zqLASrsAQDBDUT2Sx3AuKjm4+3brtwCAyesnY0LPCT7bMgr7sguyVa+DGQq36+yugM+Raav2aifUxv7z+72OMxMSje0+FokxiSgoKMD6XetV+05knVCCywhbhG5Fm16Q5pbccEne+8WffYWT4hxteiFaxeiKqmGx2mO074cY1iXFJhlWi+kxO1egv4o2M3OrmXF11avx06CffIaLekNLb2p0EzokdzAdMJr5TAcydDSQOeKIiC5lAf8TPzIyEpmZ3qvz7NmzB0lJSSHpFBERERGVDcVdDEGsDNNWogXTnq8VNrXt+WvfV0WbPPRVJlfoFLgL8NKil8x0tVi0/WpRpYXucWYq2uRAxWKxIMqqPj6rIEs1dFRcDEEvaJODF4/k0V2VVK/6TY+/Odq+/NeXquBKGzp1r9Nd9VpvFU6zzFZfidfQW3U02GGWeoJpy2KxoEq5Kqbvx9QcbVzUgIiuQAEHbf/617/wyiuvwOks/AejxWLBkSNH8Pzzz+O2224LeQeJiIiI6PIV6NBR7bGqoaMBVrRl5Wdh1dFVqnnUfAVtSw8tVYV5/ipsfM3Rlu1UV7TJ1VnLDi3DltQtPtsNBW2/miU10w2uxKDNKHQTA6IIi3oesQsFF1RzsekthqBb0eZx669KKlzLV+AjztGmVwlmt9oNK+UebvMwutTqojrebOBVnLnD/C2GEMqgrSSI71WF6Aq6vy+BVHIGO+ciEdGlJuCg7Z133sGFCxdQuXJl5Obmolu3bmjQoAHi4uLw+uuvh6OPRERERHSZkUOS4q46qqpo0wRt/hYseO/v9zBh5QR8u+VbZZuvoC0jPwM/7fxJee2vvxIkw6GjRhVt2rnbwkW8z+Epw1E9rrpukCOGa+JwTJEYlkRa1UNNxUDRYXMUrTbrdurOwSYHS0cyjijDF8NR0aZtV/y5aVJTrxDPbNBWKaaS4T5//A0dvdyCNovFgkdqPIL/9vkvYhwxDMqIiC4K+Ns8ISEBCxYswMqVK7FlyxZcuHABrVu3Rs+ePcPRPyIiIiK6TOgFU8EOHZWPFc8JdOjouhPrAACzds7C0JSh2H1mN45lHvN5zqIDi5Sfd5/djXn75qFvg76GxxuFfdqgTazkKglyABjjiMEtTQtX8nRYHV5zc4lBW4wjBmdzz3q1pVoZ02q8Mqa4GILL41KCUb2Kts83fK5sM6xo81E9ZmYxBLtFP2jTC/DE4M1X4FUhqgLO5Jwx3O+Lv8UQSiNoC2buQFGliEqonVA7RL0hIiobgv4279y5Mzp37hzKvhARERHRJaTAXYCV51eiZWZL1K1U1+/xeiFSsENH9YahBTp0NNoerVSQSZKEZxY84/e62tDm43Ufo1vtboh2RANQB3GA8cqn2sUQ5NAomJVSASA5LhnHs46bPl5+L8RqL38VbWJ4JVJN2G8xrh6zW+3K9Zyeooo2VcCkMzl+MBVtRtV3IqM52vTaNbvaaSCLJGhdihVtZuboM6tt9bZYdWwVouxRqF+hPmrG1wzo/KrlqoasL0REpcnUt/kHH3xgusEnnngi6M4QERER0aXj0/WfYun5pcj4KwOf/+tzv8frhUhiOBZIyKQ3DE077NNfew0qNsDW1K0AgFMXTqn2WS1W3aBObxji38f+Ro+6PbDl9Ba8v+Z91b6ZO2bqXttrjraLFVPBDJ+tnVAbH/X/CJ/+8ynm7J1j6hzdhQh0JqY3CtrE5yOGQemudOXnWEescp8xjhhYLBYl3HK6i+ZoEwMvvRDLXxCnRw4+5WvpMRo6qtcHsyFX9bjqpo7To1e9Jr4n5SPLB912oBJjEnEm5wzaVW8XsjZ71uuJ+Mh4NKzUMKhAsmlSUzzW7jEkxyeHrE9ERKXB1D9R3nvvPdXrtLQ05OTkoHz58gCA9PR0xMTEoHLlygzaiIiIiMqIxYcWA4DpSiq9irZgh476W4jATHtiaJaWk6baF22P9grDjK67++xu9KjbA3P2eIdc4mINIm3bcrjja444I5WiC+cFG5YyDKuPrca53HN+z5FDSFVFm8X7X/3F/dp5z/Ld+aq+A0Db+LZY5FmEYSnDMG/fPOU+5QozZY42j/4cbXohlxjEicGTr8+A2E61uGoAgOc7PY93Vr+DZzs+63Vdf31oktgELSu3NAzSRl0zCssOL8Mdze/AL7t+MeyXL+J1a8TXULZN7DkRTo8TcZFxQbUbjDevfxPLDy9H/4b9Q9amxWJBhxoditVGnwZ9QtQbIqLSYypoO3jwoPLzjBkz8Mknn+DLL79E48aNAQC7d+/GAw88gIceeig8vSQiIiIilZ92/IT4yHj0qt8rLO2LgVBchLkAQC9EErcFMlm6JEl+j/cXtIkVb9o506Id+kFbRn6G4XV2n93t83oi7bNQho4GMUebPAF/pD0SXWt1xa+7f/V7jt6KnnpzmYlzk4lBW4QtQjdoqx9THw/2fhDlosthxeEVXufKwZ3L49IfOqpTVWcUiPl7f7/815e4UHBBqZ7qXKszrq1xrXINo3b15n6zWqx4/Xrjhd161O2BHnV7eG2/vdntPvsoEu+9Tvk6ys9Nk5oCAJxO/cq8cKhSrgpub26+70REZF7AEwG8/PLLmDVrlhKyAUDjxo3x3nvvYeDAgbj77rtD2kEiIiKismB76naczjodkraOZx7H15u/BoCwBW3ihO9mh3KJwZYckhRnjrYcZ47y2maxKe03S2yGHWd2+A2txP3aOdMirBG6w0fT89K92tFbmCFQcqBldvjsC51ewJt/vQmgqKINKAzAzJCfndE8ZTIxzIy2Fw3H9DXcM9JeuPJobETRPGlyRZs4dNQDj9d1A5kfzV/QWjm2MirHVlZtE8Mso/np9MK+QHxx0xc4lnkMLaq0MP1+aIlBG4WWPJ9hvfL1SrsrRHSFCjhoO3nyJFwu7/9a6Xa7cfp0aP7lkYiIiKiseWHRC/B4PLjZcXOx2zqfd175WZIkVVVSKEiSpAqpzFaiiefIPwcdtEmSUlElnmu32pWgJJCKtqyCLNU+efJ+7Sqcem0WJ2CTWWCBJEm6QZ6e8lHllZ/jI+OVn7VVaXUS6uBQxiGv8+X7MlrRUybem6r6TQipjD5f4oIE2oo2p8epDP301YfkOHWIK+4v7nM3um5xV9qsUq4KqpSrUqz+cOL/8Hmlxyv4Y+8fuKHRDaXdFSK6QgUctF1//fV46KGH8MUXX6B169YAgPXr1+ORRx5Bz549Q95BIiIiorIkw+U9NDFQYnjl9DiDrqrRk5qdiucWPIeUqim61/NFDLbkn/Wq3MzwSB71sNOLoY3D6lCCklMXTvkMGsXraYeOyitkyoFUn/p9sPrYamTmZ3q1IweNZuaNM2K1WPHVxq+w6OAi/wdDHa6JCxaIYc2DrR9E19pd8fG6j5GRl4EdZ3Z4tSMGZnpDR7V91DvPiKqiLcJ7jjZ5iKZRRdvwlOHoXb+3YR+K87y11/U3dLQk1EqoheEpw1EtrlrIw3EqUjm2MoamDC3tbhDRFSzg/5zz1VdfoWrVqmjbti0iIyMRGRmJ9u3bo0qVKvjiiy/C0UciIiKiMqO44QGgXmAgmMn1fZm6aSrO5p5VBULiNfJceRi9cDR+2/Wb17lmK9ryXfmm+q13TGJMolKd9M2WbzB5w2TD830FbQ6bwyt8ibHHQI/cTjDzq4nMzK0mE8M1cQVHbXCWEJWAF7u8iHbJ+qtHisGV3tBR8RmJn01/oRxgUNFmK5qjTV5x1mjYZsXoiqqwDlBXzwUyp5+eQBZDKCm3NL0F19S4ptSuT0RE4RdwRVtSUhLmzp2LPXv2YNeuXQCAJk2aoFGjRiHvHBEREVFZE5KgzRO+oE2v6ky8xpw9c7AtbRu2pW3DzU3Uw2D1KtrEc92SG/mufAycORAVoyti6oCpPvuhF2xVj6uu2j57z2w82OZB3TbE47Ly1UNHHVaH1zxkYrglkt+z4jzrwxmHAzreYXPgwdYP4nDGYbSu1lq1XflZCN30hoUCUM1zJy52AAC14muhRZUWymsx2DJT0SbOj6bM0WYtmqNNDrSMQi694E9U3KGjRquZlmbQRkREZV/AQZusUaNGDNeIiIiISkG+q2juslAHbXpD2sRgL9eVa3iuKlQzqGg7knEEAHAu95zX+doKJvG6suS4ZBzLPGbYB5EY/K08ulK1z261w25RB0DRjmjo0VvYIVB6q5nKYhwxyHPnqbY5rA7c1Pgmr2ONhoIahUfi3HQPtH4ARzKO4JYmt6B7ne6ItEfCbrXj3d7vIjEmEb/s+kU51l8IBgA1E2qq7kHsk1tyK8/fKOQKd9Amvr+hnKONiIjIl4CDtuHDh/vc/9VXXwXdGSIiIqKyLhQT6+e5ikKZkAdtOvNXidfwNb+VauioPEebRz1Hmxh+aedXE6v9tHO0yZLjk3Hywkl/t6G0YcRutauCKovFYlzRJhW/os3IM7WfwVzLXO+gzWDopjgfn5mVNMWgrVpcNXzxL++pXhpWaui1zcwcYrUSann1Sy88M6q887f6Zygr2oxWNiUiIgq1gIO28+fPq147nU5s27YN6enpuO6660LWMSIiIqKyorhzTWmJVWXifG2hoBdCBLMYgnyOtqJNG7yJwYt2qKjedauVq2Y6KPE1p5q86qjMarEi2m5c0eaRPCEZ9qsVZYuCA96hmtHQTaOho0bPRAxlA2FmwYAKURWUn+XVVPX6HWxFWygXQ2DQRkREJSXgoO2XX37x2ubxePDII4+gfv36IekUERER0aVAkiRsOrUJtcvXVk1IH3A7QmAQirAm11kUtJkNwbac3oIftv2AR9o9ghrxNQyP06tkUlW0+ah00oZo2nMlSVJVKXkkD2wQgjbNCqV69xYbEWs+aJPMB20WWHwOHQ1HNZtML5wyes5GQ0eN5mgLRKCBsMViQa34WjiSeQTtk9sD0A/PjCrv/AZtxQyojYJIBm1ERBROIfmnjNVqxahRo/Dee++FojkiIiKiS8La42sxZukYDP9Nf+oMSZLw9aav8fexv322E4rhoiKxos1sAPTS4pewJXULXln2is/j/FW0iZVOLy9+GeOWjlMCEdViCBdDN214pn0tEoO6vef24qXFL+n2z2yo5Ctoc9gcqiDG59BRSGEN2sThoP6I4ZqZoaNVYquYblsMgc0MHQWAt3u/jY/7f6wMP7VYLF4BmlFlmb/3sbi/N0aVdAzaiIgonIJeDEFr//79cLnC9y8gRERERCVt06lNAIwDm9XHVuOnnT8BAGYPnm3YjhgYhKKirThztPmb30xvyKC4KIEYwGw6vQkAkO/OR5Q9SneONu3QUW1Fm0h8rbcQAlAYzmiDEpfHpVsd5W+OtkCGjvoahlpc1eKq4UDGAVPHin02s+ro+O7jg+qTmaGjQOEiCOJcbUBhH+X33QKLYbgW9sUQLrZvsVhUn1uzISIREVEwAg7aRo0apXotSRJOnjyJOXPmYOjQoSHrGBEREVFp81f5cj73vM/9MlXQFoL52sSho0aBVLD0Qgh5yKfR89BbLEBv1VG35NYdXiru98dm9Q7acpw5WHd8HZYfWo7mnuZefdDj+H/27jtMqup+A/h7p29nl2XpsCAqoHQQQcEoIIqxhsQYo0ZjDzEGW4gRe0RFg0mMxhb9JRpborEgCgg2EBVFighI77u03WXL9N8f67177p1zy8zObH0/z5Mnu3du+d47s8C+fs85Lm/CZPl+t1+6byweS/tzFvXK74VP8ImjfZNZdXRKvynont/dcR3iZ7MxYZTX5UUd6sNgY7CsC91sFkNI1xxtxmeTjmG2REREZpLum/7qq690/1u5ciUA4KGHHsKcOXOSLuDRRx9FaWkpAoEARo8ejc8++8x03yeffBLjxo1DYWEhCgsLMXHixIT9Dx8+jGnTpqFHjx7IysrCwIED8fjjjyddFxEREbUMkVgEv533Wzy89OEmv7Zd2OB0CFpLGDpq1z2kMrsnq+uoAZl4n6l0tDnpGnMr7oSApjpUjTnL5uCL3V/gq8qvTM8v8rq9CXO0Wa06alXbdcddh9KCUtvazfTp0MfxvuIwU11HmyS0Mlu51Ixu6KjDjjYZq+smsxhCY6nPx2X4lYcdbURElElJ/+22aNGitF38pZdewvTp0/H4449j9OjRmDNnDiZPnox169ahpKQkYf/FixfjggsuwNixYxEIBHD//ffj1FNPxZo1a9C9e/1/rZs+fTref/99/Otf/0JpaSnee+89XHvttejWrRvOOuustNVORERETWPl3pX47uB3+O7gd5g+Zrr9AWlkF6Q5/YU93UNHU1kMId+fjwO1BwAADy15CKcfeToGdhqYsJ9ZwBKJReBz+6SrnMoWPtDmaIslMUdbih1t1eHqhjrj+g46M93yumF/zX7te5fiMl0MwW6ONq/b26h5v47ueLTjfc3maJNd32zlUjODSgbhzfXmQ6CdsloJN5nFEBpLfVack42IiJpS0n/rnHLKKTh06FDC9srKSpxyyilJnevhhx/GFVdcgUsvvVTrPMvOzsYzzzwj3f/555/Htddei6FDh6J///546qmnEIvFsHDhQm2fJUuW4JJLLsEPfvADlJaW4sorr8SQIUMsO+WIiIio5UrH3FjzvpuHF1e/mPRxdkPMnP4CLw7Ja6452gr8BdrXi7cuxi0LbpHuZ9fRJhtCKVv4QNbRtuHABl24ZQzCnLzXLsWVUGN5dbn2dcDd0JVmPN/wLsO1r/t06KPvaFMU0znaorGo5XP2uDy2wyCt5Pnz8Lcpf3O0bzKrjiYbZB3f43jcOu5WPH3W043q+hI7Lo2asqMt25MNAKYBKhERUSYk/bfb4sWLEQqFErbX1dXho48+cnyeUCiE5cuXY8aMGdo2l8uFiRMnYunSpY7OUVNTg3A4jKKiIm3b2LFj8cYbb+Cyyy5Dt27dsHjxYqxfv95yRdRgMIhgMKh9X1lZCQAIh8MIhzM3H0dTUu+jtdwP680s1ptZrDezWG9mtcR6g+EgYrH6zidjXU7qjcfj+MuyvwAAju92PLrnOZ+zKhaLmV4bAGJR69e1ewjV30M8Hkcc8UY/35pQjXbdulCdo/Nle7K1Y1TSexLuWQ0I4/E4aoO1yHJloS5Ul3CeulAdwp6wdp8AUB2sRjgcRigS0u3/+BcNU3ps3L8R38W/w7AuwwDo32sz8Wgc8Vhct9/G/Ru156tA0e4rEo3o9hPvrWt2V7jg0r6PRWPwwCO9fiQaQW2o1ry2GIA4bGtPuJfvn284HEaX7C66483e03hUuPdow37GZwIASlxJ+rM2ovMIAPLPvtM/H0KRht8Vrht1nW5/sc5YJGb6GVQ15mcl35uPM4rPwKRhk3AwdNDRz2pzaol//lppbfUCra9m1ptZrDezWlu9Tji9F8dBmzoXGwB888032LNnj/Z9NBrFvHnztOGbTuzbtw/RaBSdO+uXHO/cuTO+/fZbR+e45ZZb0K1bN0ycOFHb9pe//AVXXnklevToAY/HA5fLhSeffBLjx483Pc99992HO+9MXJHpvffeQ3Z2tsM7ah3mz5/f3CUkhfVmFuvNLNabWaw3s1pSvWsPr0VZWRkAYO7cudJ9rOqNxqPa8e8teA+d/Z1N9zVadWAVyg6ZX/vrqq9RVl7/+ltvv2XaDVYVqdJqiBXHTOsNxoJYemgpBuQM0OoMxoJ4btdzODr7aJxUdBIAYPP2zTgYrl+I4eMlH6Mir8L0HjbUbMCOuh3YUbcDZXVlutdk97Rm3xqUVer3Ky8vx7z35qGDtwNWlK9AWZX+9ffmv4cO3g665/Fi2YvYv3E/Nlc21Gp07SvXAgCu6H4FOvs7ozxUrj0nMwveW4A1h9agrKJhv0U1i1B2uP77SMeI9nx379mNGBpCmy3VW1BWXb/fBws+wLf7vtXu9evw1zgQOCC9/ndV32HhwYWmtX269FNsObQl4fnKHJN7DNYcXtOwIa/h8yue3+yzLn6WFsxfgCx3fbfWxpqNCfWtWrEKOVtybGuS+W73dyirlX/27f58EOuoW1uHuWsbjhd/pt5f+D5y3In1OXkOTg3LH4Z9q/bhy8ovUbbP+s+RlqIl/fnrRGurF2h9NbPezGK9mdXa6rVSU1PjaD/HQdvQoUO1pbFlQ0SzsrLwl7/8xXmFjTRr1iy8+OKLWLx4MQKBhiECf/nLX/Dpp5/ijTfeQO/evfHhhx/iV7/6VUIgJ5oxY4ZuNdXKykr07NkTp556KvLz8zN+L00hHA5j/vz5mDRpErze5ObraA6sN7NYb2ax3sxivZnVEuvN35aPjz6t75qfMmWK7jUn9VaHqvH0608DACZOmIie+T0dX7tyTSXWrVkHADjt9NMSgrTsLdlY9tkyAMCpp52qm6hetK9mH/791r+11TvN6n3262exvmY91ofX4/VzXwcA/Gftf4AaYB3W4f4p9wMAXnvrNXhr6o8fMWoEXHChMKtQ6wxTrSxbiScWPwH4AMWvoCRfPweu8Xl+sPUDbF22FSWB+v3i8TjKy8vRqVMnvBJ6BS/98CVsWL4BO7fs1B138oST0TW3K9wb3Vi2fJm2/Wt8jW7du2m1muk/qj/G9BiDzYc247X3XrPcd8rpU1C1pgqb123WthWXFKOkrATxeBzhSBiTJk2Cx+PBE688oTv2yrFXYvnu5RjaZShO6HkCdn21Czs27AAADDt2GIZ1GYZ3F7ybcM0+nfrghEEn4K3335LWNP7E8Sj/thzBsqD0ddEVJ1yBP37yRwANHW3q5+GJlxvqNb43qlA0hH//598AgLPPOFsbfvn13q+x8IOFun2PH348pvSTn8fOFx9+gao9VbpanP75YHUf+1buw4ZvN9S/NnkKcnyJQZuT5+CEWK97mxtfLP+i0efMpJb456+V1lYv0PpqZr2ZxXozq7XV64Q6+tGO46Bt8+bNiMfj6Nu3Lz777DN06tRJe83n86GkpARut/O5KYqLi+F2u7F3717d9r1796JLly6Wx86ePRuzZs3CggULMHjwYG17bW0tfv/73+O1117DGWecAQAYPHgwVqxYgdmzZ5sGbX6/H35/4nLuXq+3zXwgVK3tnlhvZrHezGK9mcV6M6ul1BuLx7CzeidcrvqAy+PxSOeOsqo3Holrx/u9/qTuy+fxacfCBXg9+mN9XsPrJud2e9xwuVzacDyzerdVbtPO5/V6cTh0GHElrtsGQLftn6v+iapQfSDy2+N/i1P6NPwH0SU7ljTUh8TFG4w1PPL5I7r91aF26n9sXXtgLWKI6fYBALfbDa/XC5fblfCabH+j/Kx80+ON/D4/vB6vbr99Nfu05xuOh03PVZBdgOvHXq99H/AGtH18Xh/ysvKk11cUxbK2LF9W/YIINrUDQLY/W9tPfb7q50E83uyz5PV68czZz9TPKedvmHss4AskXD/Ll5Xyz7Hb7U743Ik1WJ3X6j7E8wb8gYSfKbvjU+H1erWRLuk6Zya1lD9/nWpt9QKtr2bWm1msN7NaW71WnN6H46Ctd+/eAJKfe8KMz+fDiBEjsHDhQpxzzjnauRcuXIhp06aZHvfAAw/g3nvvxbvvvouRI0fqXlPnVJP94y9ddRMREVHTeezzxzBv47xGnSMUbZgvyrjKpR2xgy0cC8MP/X+YE4Mrq8nyxcUQrGoIeBq69JdsX4L7Pr5Pup94LTVkA4BlO5bpgra91fr/oNlYHpdHuqKkbOEDlZPFGvzu+ufqZDEEt+JOWHjgYF3D0FR11VHZiqPGVTiNq3aqdRjZrTrqcXlsF87QanA3/peNzrmJw59l10921VGR2eqzyRA/zyrx85/pxRCIiIiag6O/3d544w2cfvrp8Hq9eOONNyz3PeussxxffPr06bjkkkswcuRIHHfccZgzZw6qq6tx6aWXAgAuvvhidO/eHffdV/+PzPvvvx8zZ87ECy+8gNLSUm2euNzcXOTm5iI/Px8nnXQSbrrpJmRlZaF379744IMP8H//9394+OGHHddFRERELYMxZIvFY44DDZUYtMnCFyviCqGygEkMDayCGHE/cc4wI3F1xL8v/7vpfmaBVE1YP3eIOh9ZunhcHumqo+r9yepy8szV5+wkCJWtOirWpH4tO5dxaK8YeilQ4PfIg7ZYPGb5/rpdieGfGbPhxY0lmx+wMaFeY1YdVWV7E+c6FkPnZH+WiYiIWgNHQds555yDPXv2oKSkROs+k1EUBdGo83/Ann/++SgvL8fMmTOxZ88eDB06FPPmzdMWSNi2bZuuO+2xxx5DKBTC1KlTdee5/fbbcccddwAAXnzxRcyYMQMXXnghDhw4gN69e+Pee+/F1Vdf7bguIiIiSlQXqcNdH9yF0d1H4+z+ZzdLDbF4DG4k98t5MNowb5ZdkHOg9gA+3/k5JvadCLfLrdtfDHO2HNqCXF+uLlhyHLQ57Giz2s8svKqN1OqOL68pNz2HatHmRZj33TzccuIttvuGoiF5R9v3z0FWl5OONi2ocxDKKYpiuugEAITjYV1NImPwZOxoMwvB4nH7jjarmkSZCtqkQ6ob0dHWGH079MWmQ5swoc+EhNfE8DodYR4REVFL4yhoMy6Lnk7Tpk0zHSq6ePFi3fdbtmyxPV+XLl3wj3/8Iw2VERERkeidDe9gVdkqrCpb1WxBm/hLulO6jjaboYmXvH4JgPpA5pQ+p+j2VwOmsuoy/PqdXwMArjvuOu31dHS0OQ3azK5VG24I2g7UHnAUcj38aX3X/6OfPWq7bygakna0qQGZ7PmKz9+MFtQ5GDoKWHdCqUNHZc/PGDyJ3yuKYjp01LajTXGb1jShzwQs3NywSEGmwq+qYFXCtsYMzTy25Fh8vuvzlI696+S7sHLvShzf4/iE15Idvk1ERNTacGIEIiIickTsDGsuqfyS7nSONnGY5e6q3QD0HVZqwLTp4CZtm/i6VRAj7mdVgxj0iKGZ6n/f/q/+fCaBlNjRluyw0d2Hd9vuE4qGpPep3pOTYE8mmY42QD5MUqV1tEnOZTd01KzDyi5oM+toG1A8AGcedaYuaMtUR1u3vG4J25x22cmcdfRZCHgCGNJ5SNLHFgQKMK73uJSvnQmDSgYBSM/cc0RERFYcBW1//vOfHZ/wuuuus9+JiIiI2rVYPIZgJKibk8zpcckKRpwNHV2+a7n2dWFWIQBIO9rMhoE6XgzBoqNNDH5knWNPffWU6bGAPmjbX7Pfcl8jcVEFM8FI0HLoaKrdSlZzvMlYBm1JzNEmdnzJ5li76wd3YebimYgjblmbMWj7+aCfIxqP4rR+p6GirsKyBplUwqCueV3x4KQHEfAEtI7LxgzN9Lg8mHLklJSPN+P0PU637vnd8fgZj6MgUNAs1yciovbDUdD2pz/9ydHJFEVh0EZERES2bnzvRmw4sAH/PPef6BDo4Pg4MbByyuliCOJCArIOK1mAk+452ho7rK42XIt4PA5FUXCo7lBSx1YGK233sRs6mmrXo3rfTu/fauEBbdXRJOdok4VbanhWE67BnGVzLOsRayrJKcHJfU4GkPhcrRYoKMoqwoHaAzi25FjTfaz0L+6vC0Ib09GWKakM/06X7vndm+3aRETUfjgK2jZv3pzpOoiIiKiJHag9gMJAYUpdL7XhWvx52Z8xrvc4jO05NunjNxzYAAD4fOfnmHTEJMfHZXLoqBggyYIfu442WQAl28+qo62xQVs0HkU4FobP7Us6aHNybavFEL4p/wb/W/e/pK5pvHamh47azdFmpG7bW73Xsh6Py6Obo00M3Yy1WnW0zZowC+9ufBdnH536HIjGBR5amlTCciIiotakUX/7xuNx/mVJRETUCi3ctBCXvH4J/rEitQWEXl7zMj7e/jHu+/i+RtWRbMiX0tBRocvKatiaGCCp+4ldarKONqdDR5uqow1omNutIlhhs2fyoUcwGpQGivd8dA9uWWC/aqmZd757B5e/cTm2HtrqaP9UVx01dsLZhVJOgyq34tbta9UpZ7WQQ9e8rvjF0F9oQ5dTIf5MtcigrRk72oiIiJpCSn/7Pv300zj22GMRCAQQCARw7LHH4qmnrOcMISIiopbjyS+fBAC89u1rjo8RA4P9tcnN/+XknE6k8ku60znaZB1tdnO0OV0MwWnQlo75q9btX4eqYJXW0Wb1jJ12kKnC0bDWIVgYaAiDnKwsamX57uXYW70XL6x+wdH+VgGS+j44CS3tho46/Xx63V5diCcOhxZr9bl9jZo3LVl5vrwmu5ZT/I/0RETU1iUdtM2cORO/+c1vcOaZZ+KVV17BK6+8gjPPPBO//e1vMXPmzEzUSERERC2AGBCko/NKtLZ8LS7936VYsn2J5X6NHTpqFSzJhpjK5mgTgwIxXHMctGVw6CgA3P3h3bjqrau0oK1jdkfTfWXDQK2IHW0PTnoQ/Tv2t9y/Z37PpM7vlKwrTA3FrIaOGonzpTW2o02sSQzaxJ8bdahqple+nH78dFw29DL0LMjM828MdrQREVFbl3TQ9thjj+HJJ5/Efffdh7POOgtnnXUW7rvvPjzxxBP429/+lokaiYiIqIVx2pXy+rev4+q3rjZdAVMNIe7+8G7sq9lnOxQ1o3O0RZOfo008pqUMHQXqVxBVg7birGLT/axqVo0pGIP+xfWBmjhHm7GLSyaZhS5EI7qOwE8G/sT0dVkAlu/PB9AQtCXd0SbpNHMatHlcHt3nTOz2MxtSmkkn9zkZ5w44t0mulax0h/REREQtTdJBWzgcxsiRIxO2jxgxApGI/T/WiIiIqPVz+svy0189jZ1VO/HCKvmQQLWzx+lqlRmdo00ydFQ2R5usyw2w7g5ryo421cG6gwCA4mzzoM1qAQdVljsLo7qOAgBUBau0jqQsT5blfGMAUOAvcFqujs/tw0VDLjJ9XRaAZXuzAdS/P5FYRHuvO2V3wiVDLsHtJ92ecIy4GILsnE6HeSqKgqpQlfZ9wBOQnlftoGvK4aMtjdXnUTW8y3AAQI+8Hpkuh4iIKO2S/s9qF110ER577DE8/PDDuu1PPPEELrzwwrQVRkRERC1XsoGQGOiI3XDJBg6pzO/UmI422RxtYg3iMRXBCtz43o0Y12sczu6vXzXS8RxtScyZ5nV50adDH6w/sF76unrfRVlFpudw0tHmggt+jx9AQ3inQEHAE7Dt+Mr15dqeX8YuwJPpEOiA8upyAEB5Tbn2LN2KG1MHTpUeIxs6qkDRwsRkFhOoDFZqX4ufa3GYqEfxaOdtr51dUwdOxb6afTih5wmm+9w49ka8u/FdnFx6chNWRkRElB4p9a8//fTTeO+993D88ccDAJYtW4Zt27bh4osvxvTp07X9jGEcERERtQ2NmWdJPDbZVREzOUebGAaq+8kWOzBbafTVb15FRbAC6/avswzaojCvIZn7y/Zm46IhF+G2RbeZ7uNW3Mjzm0+I72SONkVR4HP7AAAHaw9q11YURTp09NhOx2J1+WoA0AK6ZKmfi0l9J+GDrR84WmzB4/KgW2437MAO7Krahfys+qGkVsNbZYsheFwe7bOQatAmEkM39XqZnqOtJQt4Arj++Ost98nz55mGo0RERC1d0kHb6tWrMXx4fTv3xo0bAQDFxcUoLi7G6tWrtf3ac0s8ERFRWySGA046ocyObczKmikNHXW66qjNHG1q2KObo00I58yCFuMx6Zqjze1y2875lefPs9zHydBRF1zwub4P2r7vaMvx5tS/JgmixvUeh+2V23FUx6OQ5clKeH3m+Jm468O7LK+phmPXjb4O1466Fue+pJ9vTPac3IobXfO6AgB2Ve1Cjt+8RpVsjjYxaJMFYn069MHmQ5sTtpu9/7I52vjvZCIiorYr6aBt0aJFmaiDiIioTVi/fz3cihtHFB3R3KVYSuUXffGYpIM24VixSyzZzp51+9dhW8U2jOk5xvExuo42i5BPNsRUNkeb2WIIVl1+mQjaPIpHN8eYTJ4vz3IfJ++joihaZ1ptpBZAw3xoshCrMFCIZ895Fm7FjapQFd7d+C6GdhmKRVvq/w3Zp7APBpcMxsqylabXFIeOOl1AwOPyoFteNwD1QVvfjn0TzmUkm6PNaoGE0444DecNOA+3vn8rzu1/LnJ8OSjJKQEAnFx6Ml5f9zoGlwzWHSN+xrU52tpxRxsREVFb1zRLHxEREbUDNeEa3PDeDQCA189/3XZFxtbMSUBjNp+aGHYlG/j96dM/AQD+evpf0btDb8t9Q9EQfG6f8znaJIshiLWqwyZlw0ntZGIxBLfLrZtjrEOgg7bSqCrPl5fwORxQPABr960F4GzoqBtubeioSp17TRZiBTwBLazK9+fjuXOeQzgW1oK2XF+u7ZBMu58dWajpdrnRLbc+aNt9eLf23jnuaPs+/BKfqfH+3K76rrlnzn4m4VwXDbkIAzoNwJDOQ3Tbxeur52NHGxERUduV9KqjdXV1ePDBBzFlyhSMHDkSw4cP1/2PiIiovaoKNqw6mMyk9q2Rk4DJbFiiGCap4UayHT47KndYvv7a2tfwo5d/hBV7VuhqtZyjzWboqHpNWZebHbOOtrkb5uLm+Tdrn51khtW6FbeuI6tTdqeEfWRDR/844Y/omd8TgLPVXl2KSxc+AQ0dbbJATFxxE2iY4+2hUx/C7EmzHS2iYAz2jGQhrltxa6ucVoertefsdI42Nby7YcwNcCkuXDn8yoRAzKq7zuf2YWzPscjx5ei264K272tJZbEHIiIiah2S7mj75S9/iffeew9Tp07Fcccdx/8iR0REJJHK6pjpuOaWQ1vQq6BXxrvpnARt4txoujnahLDLbLjlgdoDlqtl2k2O/8yK+o6jh5Y+hM45nbXtso6xeDyOqlCVfjGEWOJiCDuq6oO2ukidts1JR5jxumJH22NfPAYAeOWbV3DZsMuSGzrq8uiCn+LsYmw4sEG3T74/PyEccisNc7uJ75EZF1zwu/WLGqhhkllHm8xRHY9qOGcjVyuVztHmcmtDXOsidQ1Bm9XQUSFAVN/zwZ0H4z8/+Q88Lg92Vu7UXyOFgEz8t7J6/MyTZuLej+7FZYMvw+E1h5M+JxEREbVcSQdtb731FubOnYsTTjBfkpuIiKi9S2XS/sZ65ZtX8M+V/8TEPhPxm+N/k9FrOQmYxG4pXVeZ0LX1Tfk3WL5ruW7fN9e9iSe+fAK/GPILKFCkYZzTTrLDocMoCjQEdrKOsf+s/Q+e+/o53TbZHG2VwUq8suYVvPLNK9L7siLeg+yzUVFXYfqaGePQ0eLs4oR9cn25unBIgQJFUbSgTQwNzbiUxKDNao42s6DNeE4r6mILZmSfCY/Lo127NlKrhaROO9rEUFXdbqzT6XxxIjFkVs83sNNA/OvcfyESiWDumrlJn5OIiIharqSHjnbv3h15eebLxBMREbVXdmFKpr2w6gUAwILNCzJyfvGenARMYogjBmlioPHm+jcT6n3iyycAAM9+/azpuVeXrcY/vvqHbVAUiUUS5l4LRUP4ZNsn2FezDwASQjaxRmMw938r/0/3vVngZ+xoFM9jFRwmFbQZho52zOqYsI+xo00NndTjjM9P1kWoQNGCNZUahDkZOirT2I42s6Gjap214VpHc7SJIaQshE1H0CYbOgpwnjYiIqK2Kul/LTz00EO45ZZb8Pjjj6N3b+tJiImIiNqr5gjaMjUvXEVdBbK8Wfr5yqqs50gD9MMSxa+TmYfMbGipOrF+PB5HRyQGTCKx+y4aj+LyNy7HwbqDGNF1BO74wR3SY2RztNmdWxSNR+FRGv6ZZbfqqDoUNpn30O1y64KfDoEOCfvUhmt1+xhX1jQGbd1yu+FA7QHdNpfiQpYnS7dNm6NNMpQyy5uVsM2o0UGbyWIIAXd9yFcXrWvoaLMY7mm2Gq7sdfUayRLPYXffRERE1Pol/bf9yJEjUVdXh759+yIvLw9FRUW6/xEREVF6g7Z9NfuaZc43oH6utJ+/9nNc89Y1Sd+TGOI4XfkzWdsrttvuI3adVYeqcbCufvXQXVW7AMi7uLRVR78PX7rkdLE9t267IYAT7zmKxEBH7RBMdo42ceioS3FheJfh6JbbTQvSjup4lL6j7fvQST3OuBhC59zOMHLBlRCeqXO0yYIj4zBTGduhoz750FF1GKass8ytuLVuumgsqoW7TsOxJulo4yIIREREbV7S/1q44IILsHPnTvzxj39E586d2fZORERtUjwex/Ldy1HaoVQ695XZMap0hUnqfGVTB0zFJUMvScs5k/Hl7i8BAGU1ZUl1ogH6oG11+WpUBiuR7893PK+ZE2YhSo43B9XhagD6MEz8Wg1ACgOFCV1cxjnauuV1w57qPQnXMbsX43YnHW3bK7bj812fS88nYxw6CgB3/OAOxBHHgdoDWL9/PY7rfhxW7FnRcIxh6Og/V/5Td7xs5VKX4oLH5YHP7dMCU7Oho+occHYa29H2g9If4N3v3sWBugPaEGBxjjagfn4+J9dSyTrajMemEpSZDR0lIiKitinpoG3JkiVYunQphgwZkol6iIiIWoTPdn6Gez66BwDw5gVvOjpGDFDMhjwm68kvnwQAvLr21WYJ2hoTHhq7pW567yb8/cy/p3WIq1nwIQZtdp11shVMtY6278PFrnldgcSczbyjzbBdN38f5EHbtXOvlZ7LjNvlTgi1FEWBAgXF2cVaQCyGO+rzMguPu+V1S9im1p7tzdaeVb4/H4A+RLpm5DU4qfdJjmu3Yha0qdfzuX14aPJDWLR5ER7+9GHtnG6XWxuy+8WuLwAgYdirGVmQLC5kADR+MQR2tBEREbV9Sf9roX///qitrc1ELURERC3GqrJVSR9j17WUCpfiytjca040ZoEHcV42ANh1uH6oZrKdcVbMAhtx8n4xSBO/VsMw2YIK2hxt34disgAKMO9oC0fDWL9/PV795lWM7z1eG6Yqntu4f7KcHiNbDEF2PxcOuhC9OyTOv6s+p2xPNg7hEAB50NY5p7PpkE+jVDvarOZMU0Msv6t+6Orq8tVQoOCHR/3QUU2y9yWhoy2FjjR2tBEREbUvSQdts2bNwg033IB7770XgwYNgterH7KQn5+ftuKIiIiaSmWwEmvL12Jkt5Fwu9wpTVouBmLpCtrcLjei0WYM2hx0tO2s3ImAJ4CO2fpFCYwdbeo5kg0OFSjomd8T2yq3Jbxm1iFk1lEohlPq11ZBm9bRltvV9nyiSCyCG967AQCwdMdS3WuhWGIHnayrzo5ZN52RbDEEY9BW4C/AT4/9KbYc2pJ4nXj9dcRhmWrQJj5/v8d+bjZjHWaczPNmPI82LFZp+Ldp19yuGNBpgO21gtEghnRJHK1hDPaMQ3WTxcUQiIiI2r6kg7bTTjsNADBhwgTd9ng8DkVRmvWXASIiolTd+N6N2H14Ny4deinOG3BewpAxJ3QT3qepa6spfjFX/w6XviYEVmYB2dVvXw0gcYitLMCaNncadlTar1gqsgo+zYbymXWayTraZIGg+v6p5zGGiMZz5PnyUBWqStguUxurRTgahsfjcbS/GWPIJ+tGAyBdDMEYtKkhlexzLwtY8/x5uuOAxodQIrPPo7E+MehT79Pn8mnbOuUkzjln9Ow5z+JA7QH0KuiV8Fo6Otq46igREVH7knTQtmjRItPXVq1KfpgNERFRS7D78G4AwCfbPsF5A85L6RdisfsrXXO0NcWcTtF4VJvXanvldswtn4vjao5D14KuunuyG6r4/MrncXb/s7Vhf8aho+r5k+VxeUyDF7PnYxZ06hZGiIYRi8ek3WR1kTos3b5Um1Df7/brFgNQqUFcvj9fH7TZPKuKYIVuVIAs7LOj1vLX0/+Ksuoy9C3sK91PFrSV5JTo9lHfZ/Fzf3q/07Fm7xocEz4GgP7Z+dw+3fmA5DraZEZ3H41lO5dp55Yxfg5kK3r6XD6EUP9sjPcpk+vLNR+qmoY52kSco42IiKjtS/pfCyedpJ/ktqqqCv/+97/x1FNPYfny5Zg2bVraiiMiImouqQRtjZmjLRQN4e31b2NU91Hokd+jUXUkKxKLaAHCzQtuxtaqrZj96Ww8NPkhXWBo13X14poXsatqF2464SZH+zvlVsw72sTOtf01+7FoyyJMPmIyInHzudO0r2NhaRgIACvLVmJl2Urte4/LA7/bnxC0qe9zgb8AO6t2SuuSOVh3EB2yO2jfq4FeMtTn27tDb9NuNkAf7qgdWW6XGxcOuhDPr3peV68YZF0+/HIoMQVz587V7SMS35dkOtrEAFc1pPMQ/PCoH5oO05XRzdH2/dc+JbmgzUo6Vh0VNTaoIyIiopYv5X+9f/jhh7jkkkvQtWtXzJ49G6eccgo+/fTTdNZGRETUbJo6aHtp9Ut4ZsUzuObtaxpdR7LE7q/aSP2CR5sObgKgD0TMQinRN/u+kZ63MayGjoph3l0f3IXnvn4OT3/1tOm1jUGZujIpAJRkm4cybpfbstNKnbNMVpfMobpDuuDKLpiTSWWONjEo+umxP024vniPxmcue6Zi0JVMR5us49PtcmNol6HonNvZ9Dhjh5lZR5uqU7b90FErxg66Rne0cTEEIiKiNi+pfy3s2bMHzz77LJ5++mlUVlbiJz/5CYLBIF5//XUMHDgwUzUSERE1GfUXa7OhilYaE7R9u+/bhG3LdixDRbAi6TqcEAM0WcijhhbifTgJdlzCf8NTz3tU0VFYf2B9yrV6XB7ToE0MzjYdqg8HP9n+iWl3lTFoqwrWD/cMeAJ46qyn8NG2j/DgkgcTjnMpruSCNpuhowfrDja64y+VVUfNnqM6/15JTgl+eOQPEfAE4HF5dNcw6xJUWT0fI1lHm5NusYRVRyXdej6loY50d7Q1NmjjHG1ERERtn+N/LZx55pn48MMPccYZZ2DOnDk47bTT4Ha78fjjj2eyPiIiombR1KuOyq53z0f3JF2DU2KtkVgEizYvwkfbPtK2qYGCGMI56WiTXePYkmMbFbS5FJfp4hRLdizBogOL0H1vd21bni/PdCimMdxS51Xzu/1QFMX0fXcryXW02Q4drT2YUhebyGlQJ64WajYXnBioXTXyKuk+vfJ74UDtAd028XOeVNAm6WhzEmJZdbSpx/fO6o19rn04rvtx6F/c33FNMulYDEF3POdoIyIiavMcB23vvPMOrrvuOlxzzTU48sgjM1kTERFRs2vsYgjJBm2N+QV+V9UudMnton3vpHZxGGA0HsXDnz4srUcMc2SLBhiJHUfqNfwePxQoKS8Q4VHMF0MAgIpIBf695t/a97F4zHSFVOM9qIGcGkaZBSEelyetQ0crghWND9ocdrTl+HK0r8V55ERO3pvrRl+H//v6/3DW0Wdp28R7aOwcbU5+BpwshjAkbwh+d/rv4PM5D/5Mr5fmxRDY0UZERNT2Of7b/uOPP0ZVVRVGjBiB0aNH469//Sv27duXydqIiJpdKBrCP7/+J9btW9fcpVATa+o52lL9BXzhpoW46q2rMHvJbG2bGBY9/eXTeGHVCwnH2c0PpgYKxsUD7Ij3oZ7X4/I0akVKt8tt2wm0q2qX9vWB2gOmoWBCR5swdBSQvw8n9DwB2d7spIK2t9a/Jd1PDYoO1jVdR1u6dMrphBvG3oAjOzb8B1cxsE0mLJb9fFiFWF1y6oPkkV1H6rbLFkMAUhv6LZPuxRA4RxsREVHb5/hf9ccffzyefPJJ7N69G1dddRVefPFFdOvWDbFYDPPnz0dVVZX9SYiIWplX1ryCl795GTfOv7G5S2mT5nw6B7+d99tGBw6Z0NigTdaxY8X4C7zT419e8zIA6IZ9qr/Ml1WX4fV1r+Pfq/+tC0Ti8biug0k2yX04GkYkFkl66KgCBQs3LcS1b1+LHZU76utR3PC77YO2I4uOxOCSwQnbPS7rjjYAqIvUaV9bdWclzNEWsg7aLh16KX534u+gKAp6F5iv7GkM2taUr5Hu1zGrI4DGBW0T+kwAAEwdMNXxMd3zutvvlIJ0/uxahVj3TbwPlw+7HNeOula3XTZ0NJ3SvhgCh44SERG1eUn/FpGTk4PLLrsMH3/8MVatWoUbbrgBs2bNQklJCc466yz7ExARtSJbK7Y2dwlt2sLNC/Hdwe/w9Z6vm7uUBOKQsTsW36ELcszIOtr21+zHV5VfSUOqeDyuBWoJKzyaDH20uqZK/WVeDJVC0ZDWvWUMR2RhSUWwAr96+1e6riknHVSKomDOsjnYXrldW4HUbtilKteXK+34cStu0znaVE6GtQKJwy3VoaNqEGh8H8ThkBcPuRgnl56Mk3qfJK3dyT0WBYoAABV1qQ8dnXbcNDww8QH8fPDPHR9z1Yj6eddOO+K0lK5pxunn1CjZjrbi7GKc3f9s3TBYQB9cZWpYpvjZa/QcbexoIyIiavMa9S+So48+Gg888AB27NiBf//73/YHEBERSSQ7zLIpiL+0L9+9HK9+86rtMeJ9qAHETQtvwtv73sa/Vv1Lt288Hsf0d6fjhvduQCweS/gF3Okzke2n1i4GBL9+59f42X9/hn01+xLCEbPAZ9fhXVhT1tCZZTaRvkgWiNmt2KnK8+VJwxa3y50QogwsTm21c2Mgt61iGwCgKKtIu5bx2qocXw6mj5mOG8femNB553a58fx5z+OYTsdYXl+9jl1Hm7iAgZHH5cGATgOSCm2GdR2Gf5z9D1wz6hrHxzgh64Z0QtZ1mEoIlemONuM1kpmHToYdbURERG1fWv7Tn9vtxjnnnIM33ngjHacjImoxkh3+R22HMdjZXrHd9hhZR5u6SuMXu7/Q7Xuw7iC+O/gdNhzYgJ2VOxN+AXcatMk6imSBw97qvQCAz3Z+lhDwWHUlfXfwO+1rJ5Pvy4Z4elweR0NHc3250to9Lo/u/Qh4ArhixBW255MxBjzf7vsWANCvqB8A6442kWzuroAnYDu8Vh06Whep0zoMZfJ9+aavpao4uzjtXV+pduXJ/mxNJSjTzdGWoRBLt+BCIzvSuBgCERFR28e/7YmILKS6SiLZE3/RbonP2fgL8cG6g7bHWM3RZrzHymCl9vWmg5t0v8DH43Fp0CYLJ6wCObNuN2MXktOwJNWONqdDR/P8edKwxK3oO9qcdsg5oc7RdkTREdq5RWbhj3E/9XvZ5+SSIZdoX2d5s+BT6msvryk3rasgUGBXeouQ6tBR2c98KiFUOkMwM2J4zFVHiYiIyA7/ticiombRmIUDMkkNioydWWpnmpVkVh2tqKvQvt54cGPCap2y42WBmGw/dZtsfwVKYkebw+F/TuZBk3W0uV1ux3O0ed2JHWQ+t093XgVKo4fwGfXp0AdAYleU06BNDXmMQVvHrI44sdeJuuNyPPXzjO2rMV+93bi4QktlNcTVSrJztJkR369MDR3VzdHWyK45ccVWIiIiapsy8y8SIiIiG6l2wjTGa2tfQzQexdSBzldrVCXb0WYbtAUbgrbNBzejS24X7ftQNCRfCTQWTgiiZNdRn60saHMpLsdztKVC1tHmVtzwe+yHjgY8AWmQkePL0YV86exoA+qDPHWS/VQ72tS6jyw6Euv2r9O2BzwB5HgbJvCPI44cdw5CCKGsusy0ptYStJ1/zPlYv389JvWd1OhzpRJiGTsdM0Hsvks1zHvsjMewu2o3+hf3T1dZRERE1EKxo42IyEJL6rRqa8QgqSmGjtZF6vDMimfw3NfP6YZtmjEGWE66uayCNuNnSexoq43U6jq2QtGQNECTzZEmCyzVZyvtaFMkHW1pDD1lYYfTjja/2y8NMnK8OY0eOmoV4ojXbOzQ0ZtPuFm33e/2I8ubpX0fjARR6CkEAGw9ZL6qcYG/aYaONrYLrCBQgNmnzsbkfpOTOi5dHW1NsRiCWGuqw1N75PfAqO6j0lUSERERtWAM2oiIKGX/9/X/4X/f/i+lY8VwpykCTTGkspuwHpDXZNf5lUxHmzg/Vywe0wWP4Vi4UUNH1WcrC9AaM0ebkbqCpshsMQRHQZvHLw3qcn25uk45RVGkQ0ytZHuzTV+zCtrMrmPcT+3YK8kpwZR+U3TbxfPXRerQydcJALCtcptpTSO7jTR9LZ0m9JkAAOjfsWk7rVrTYgjiz4eTRT2IiIiofePQUSIiCy1xkv6WYmflTrzyzSsAgLOOPksasFhp6o62cKwhaHMSLMkCrGAkCI/P/K9Oy4424R4/3fEpXvv2Ne37aCyqC8VC0ZD0F3rxHsRjzepo7BxtHpfH8lk5XbDBrbix8cBG0/Oo8v350s9Rtjc7oaMt2Tnacn252sIHRunoaBOHh4rhnHEOs9pIbX3QZrOobI/8HvjblL/h2rnXWu/YSFcMvwLHdDqmyYI9lexnPpVusaZYDEHUFNcgIiKi1o0dbURElJLaSK32tV33lowYLDmdjL8xxMDIyeqZsiDA7jhj0GYWUr36zasJx4nPwMnQ0cpgJRZtXmQZvpk9V2NdsnMAQFEgsWNN5LTrz+PyYHSP0QCAIwqPkJ5rYp+JOKbTMdLXcnyJQ0fdLjdGdx9tWZ8o15dr+ppHMQ/azLqkdAGPoh8aK4aAxqCtLlKHTt5OtvW6FBd6FvS03a+x/B4/Tu5zMvL8eRm/lihtHW3C+8MVPYmIiKglYEcbERGlRBzKF46Fk+70EEOgdE7GbyYdQ0ftjhPDsbpIHX7+359L9+tV0Es3YX4sHtMFj+FoGDGPJGgTArHb3r8Nmw5tkteOOOLxuPS5RuPRhCGlsrnfAKBjdkeU1ZhP2C8NAyWhndvlxo8G/Ajd87pjXO9x+NHLP9K93jO/J35z/G8AyBdTyPXlJqw6CgB/GP8HfL7jc1z7in3Xl9hxJqtP5bSjTTwm25utq0/saDN2JtZF6lDgKYAv4kMkbv65b+uhkeyz09jFEGSfHSIiIqKm1rb/FUdE1EhcDMGcGCwkG5Qt27EMa/etTfl4O5FYBLcuvBXPrXhO2yYGQFadaep9SYeOJtHR9k35N6gOV2vfi58lYyDgtKNNfE5mIZsqGo9Kn2skFknYbrbQQ2Gg0PIaTueRcytu5PhyMKHvBOlcbXYBi3HoqPj8nIYzlh1tQphmDIydzNFmDPGsOtqCkSAURUGnbOuutrYetJ1+5OkJ21IZlikek+zwdSIiIqJMaBH/inv00UdRWlqKQCCA0aNH47PPPjPd98knn8S4ceNQWFiIwsJCTJw4MWF/RVGk/3vwwQczfStERO2GGBwlE5Rtq9iGez66Bw8uafgzOZ2rXgLAZzs/w8qylXh1bcMQTauONlmgKh06mkRHm9U9qcHW8d2P144zztHmdNVRq1rMViQ1Dik1CxBlix0Yr2FkNnTUihhmycIS46qjYrhiPLdZ8OY0aEtljjbjQgtimKgukqDqnt8dAGyDtrY+F9jYnmPxtyl/w8zxM7Vt7GgjIiKitqDZg7aXXnoJ06dPx+23344vv/wSQ4YMweTJk1FWJh+qsnjxYlxwwQVYtGgRli5dip49e+LUU0/Fzp07tX12796t+98zzzwDRVHwox/9SHpOIiIzXAzBnBioJBO0bTqY2ImVTIDkhCwQs+pok73Pje1os1oMQQ3asrxZ2r7GVUdlIZnZXGoy0ZjzjjazANHYjWXkuKPNJjSyC1gSVh216Ggzq7l3h96m529s0JbjM3S0SYaOPnLaIzjzqDNx6ZBLAdSvTmqlrXe0AUDPgp6WoakTTfmc2sN7QkRERI3X7P9iePjhh3HFFVfg0ksvxcCBA/H4448jOzsbzzzzjHT/559/Htdeey2GDh2K/v3746mnnkIsFsPChQu1fbp06aL73//+9z+cfPLJ6Nu3b1PdFhFRqxKOhfH35X/Hij0rHB8jBirJBGWHQ4cTtqW7o03GqqPN6eqZxuOqQ9W6gEzX0WaxwIMatKmhkHHhhHR0tC3ZvgQ7K3cmbN9euT1hqKi4sIXIpbjQt4P5352yGmXDUO2CNLuAJWHoqND1ZjxWDS+NehX0kq7kajxHOjraZENH+xb2xZUjrkS+Px+AfUdbewl1xJ+zlIaOCp8tq67FdJANeyYiIiIyatbFEEKhEJYvX44ZM2Zo21wuFyZOnIilS5c6OkdNTQ3C4TCKiuTDW/bu3Yu3334bzz33nPR1AAgGgwgGG355qqysBACEw2GEw+ntsmgu6n20lvthvZnFep2LRqOIxWJJXb81Pt/NtZux6LtF2Fa5Dcd0lK/8aFQXrtOeTW2o1tH9xuNxVNRWaMdp5wrVpfX5hsKhhPetJlijbasOVuuOD0aC2mvRWLT+z/9IOKHOw3WHteMO1h7EpW9eiqOKjsIDEx+ov26k4brqOdUgIRaLacfWhmsRi8XgVbyIxepDtnC04Xo1wRoEQ8GE64t1G18zenjpw9Lt72x4B/O+m6cLOKqD1dr51O3xeByxWAz3n3I//vrFX7Foy6KEc0UQSaijNpYY2sVjcd3zNh6jQNFeF3/mVD7Fh3gs3rA93vC+xqP6ev0uv/TZeOFF15yu0rntdNePGK4flX/WxHoC7oB+n1jDPXoUj+419euAO6DtM6bHGCzdof93TzQSRTiW+Bk8te+pTfpnS6b/PBN/VuPReFJdm6qbjr8JwUgQuZ7cjNSr1ueGO+3PoTX+fSH+f0vHejOrtdULtL6aWW9msd7Mam31OuH0Xpo1aNu3bx+i0Sg6d+6s2965c2d8++23js5xyy23oFu3bpg4caL09eeeew55eXk477zzTM9x33334c4770zY/t577yE7O1tyROs1f/785i4hKaw3s1ivvQ27N6Cstn4o+9y5c5M6trmfbzAWxPz98zEwZyD6Zlt39EbiEZSXl2NtxVrMrXV2n9/VfKcN85+/cD66+LtY7r8/tB/P7npWGsR88eUXyNos70QyY/V8v676GmXl9bW9/fbbUBQF31Z/q9W79LOliK9vCJqCsaD2mq/Sh7l1c/HlwS9RdlA/jcFHSz9C5er6/xjzZeWXKNtXhrKyMswN1T+zLw59gbID9cesPbxWt2Lnzp07tc/Qup3rUBYsw9rwWpQdLEOtuxZV3iqU1dXv/8myT7DJtylhGoX3Pn4PFQUVAGA6xUIqVtSsQNlh/fnKy8vx9ddfo8O2Dti8fzPKKhKvp0BxNLz6g0UfoMjb8B/ETsSJ+G/Zf7XvN1Vtwtzq+mezat8qlFXWX6vEVwKfy4eF7y7Emv1rtO041PDzuD+0X6sXADwVHpQFE2td+uFSHD50WLtPt+LWOik3V23G3Jr681VHq3XPduH8hQi4E4ejrtnXUM+muk2Yu6/h52bt4bXaOb5e/jVcGxK70w6uPYjysnJ08nVCWbAs4fm++867UBRFV8svu/8SJXtLkv6zKB0y9efZ+ur12j3Oe2deo84195uG55LOetX6at21GXv2zf33RbJYb2ax3sxrbTWz3sxivZnV2uq1UlNT42i/Zg3aGmvWrFl48cUXsXjxYgQC8jlZnnnmGVx44YWmrwPAjBkzMH36dO37yspKbe63/Pz8tNfdHMLhMObPn49JkybB65WvoNaSsN7MYr3Off7h56jaUwUAmDJliqNjWsrzXbpjKXYt2YXi4mJM+8E00/3C4TBW/XcVOnXqhK75XTHldGf3+dnOz/D+J+8DAE4cfyKO6niU5f73fHQP8kJ5yENewmuDBg7ClGPT93z9m/1Y9vkyAMDk0yfD4/Igb1sePvz0QwDAMcccgynHNFyvKliF5/5X3/nct7gvppwyBYdWH8K6b9bpzjtk+BBM6Vd/nG+zD198/gWAhs9GzdoarF61GgDQr2s/HNp9CPF4HOXl5ejWrZu234L3FiB0KITjBx+PdSvXoUOgAzrndEZwf3139dChQ3FU0VF4+/23ddfvfVRvTBlaf44nXn7C0fNyorRbKcp21YcJar2dOnXC8GOHY8oxU7Dp803YsnmL7pgfHvlDvLXhLUfnP3Xiqbo5yaZgCoZvHo4/f/5nAMCAbgMw5cT6+9r11S5s3bAVAPDfH/8XCuoXNNr55U7s+G5Hfb0FpZgyuX7/7Qe347HnH0OnTp2gKAoGlAxApCxxnrgzJp8B90Y3yr6pv89cX642jHlA1wGYMq7+fFXBKjz/v+cbaj19inTetz0r9mDr+vo6Rw0YhSmDGj5PnXZ1wkcffwQAGH/8eIzrNU57Tf38XnDGBZhQNwEd/B3w0jcvYeP6jfp6zzgDQMP77FJc+OW5vzR9xpmS6T/PincWY/EniwE4/zPWSibqVd+Drrld01KjqKX8feEU680s1pt5ra1m1ptZrDezWlu9TqijH+00a9BWXFwMt9uNvXv36rbv3bsXXbpYd0bMnj0bs2bNwoIFCzB48GDpPh999BHWrVuHl156yfJcfr8ffn/ivC1er7fNfCBUre2eWG9msV57LpcLLpdLu34ymvv5RhGFy+VCDDHbOmKIQVEURONRxzUrbkV7NnDZPx+3292wf8LJ0vt8xWspbgVejxdxJa5ti0J/n+5ow/5ulxter1f33qvE4wLeQMMxHjdcikt3jOKqfz7qsDOXy6UdG4lH4HK5kBvIrd9fqV8sQT02hlj9OQ3XP1B3QDuH6bNMQTgebrj29/UqigKf1wev14uaSI3uejeNvQnjeo3D3I0N3T1HFh2JDQc2SM8f8AUS3iuf16ed0+/1a6973J6G7b6Gv5u9Hq+23eP2aPtn+bO0el0uF3J8OdJnU5BdgMLsQu21bF82aiL1/1XS5/Fp5/PH/brjs/xZ0nnaxHoKsgp095fly9Jey/HnSD+nXq8XpdmlAOrfb2PNxvfZ4/I0658nmfrzzOVO/c9YK+msV/s8evwZew+a+++LZLHezGK9mdfaama9mcV6M6u11WvF6X0060y7Pp8PI0aM0C1koC5sMGbMGNPjHnjgAdx9992YN28eRo4cabrf008/jREjRmDIkCFprZuI2g/ZhPithToszsnQPnUfu1U1RcmuOmr1LJNZtdQJ8Z7D0TDeWPcGVpWt0rYZ71NcjEGd4F/23MTFEMSJ22vDtQnHGO9JtuqouBiCWIPZYgj7avYlbEuHHZU7pNvVCfmNC1j0KuilW5AAAB6c9KDp+WWT3IuT/ZstUmC2v/i1caEFcTEEcXVSv9uPHG/D6qDicFAxSDPWaraQg7g9YTEEcdVRj/29Ofn8t9XFEVrTys5cDIGIiIicaPaho9OnT8cll1yCkSNH4rjjjsOcOXNQXV2NSy+9FABw8cUXo3v37rjvvvsAAPfffz9mzpyJF154AaWlpdizZw8AIDc3F7m5DatNVVZW4pVXXsFDDz3U9DdFRNQCqKteygIbo1g8BijyFSPNJBu0WUn3qqPiPS/dsRRPfvmk7nWrVUe1oE0SDNZF6qTXq4vUIceXo1tp1GqFUDXoM1t1NBwLy4O22swEbftr90u3q0FVZVDfJi8Ln6xWjJTtLwZ1YhhlDPCMtRj3SVh11NMQtPk9fu09UxRFtyqlGMhZrTpqVo+4n7qSqEq26qgV8fN/xpFnSFckbatBW//i/gDsV55tCcQAlYiIiMhMs/+r5vzzz0d5eTlmzpyJPXv2YOjQoZg3b562QMK2bdt0wykee+wxhEIhTJ06VXee22+/HXfccYf2/Ysvvoh4PI4LLrigSe6DiKilUX95dxy0ofmCNqtQqrHnk3VrJXS0CQGZVUApHideozZSm3CM1eqJ6mtqKBSLx3THfrj1Q+T5EueyO1h7EJFYxLTLKll2ixmM7TkWAHBE0RHYVrlN255s6CMLUcRziJ1C/Yv743/r/pdYqxB46TraDAGfGGwNKB6Ar/Z8pX2f42voaBO76KyCNjOWQZs7uaBtQPEALNxc391/9cirpfuk6z1vaYqyivDs2c8mdAW2ROxoIyIiIieaPWgDgGnTpmHaNPlE3YsXL9Z9v2XLFkfnvPLKK3HllVc2sjIiau9a07AmIzX8cjL8NYb6kCcajyIai1p2J32+83NpB5Ydq2eZ7o42sR5ZQGHsaEtl6KgYStaGaxGPx3VhmTG0PFB7AMt2LMPoHqPlQ0eFsK+8phzPfv1swvXjiKM6VJ22UCLbm43qcHXC9p92+Sku+eElKM4rBgBcMfwKVIeq8dmuzwAkH7QlM3T0hJ4n4MYxN6JfUT/9OYT3UTzWGOKJwdagkkE486gztYUYxKGjTjvazIj7GUNRsaPNybDYSUdMgsflwcBOAx1dr63pmN2xuUtwhEEbEREROdF2/9VGRNTOJT109HtWXW3BSBB3fXgX7vnoHt1wwsZ2pKV7jjaxHlnIUxupxa0Lb8XsJbMB6O/fqhNQ7GgTn9Pe6r247I3L8OraV6Wvq+756B5dSKkOmYzFY4jEnT2D2khtUp2HVsSwSeR3+VEQKNC+z/Pn4ZpR12jfWwWxMrKONjE4Mw4dPan0JHTP767bX+xoE4eRGoNUMYTM9eViVPdR6N2ht/a9dk2TjjbdEFXIh40a68nzG4K2JOdocykuTOg7AV3zulruQ82LQRsRERE5wX+1ERFlyPbK7XhuxXOoClY1y/XVMMdR0AZ50Pbmujfx1e6GoXfiHGXiBPmNDcrSHrQJHW2yEHDl3pVYWbYSH2z9APF4XNdNZjVHW3WoGjfPvxmPfvao7hqvrHklYaECsy4/8fmq3VfRWNTR+wTUd8+lLWjzyIM2r5I4F5UYUpldf1yvcdLtssBKN0ebg64v8RxmCyMA+o42sWZAP3TUbPip2RBVI3UBDCBx6KjIyb05kWy4Seln/DwRERERyTBoIyKy0JhVR38979d4de2reOrLp9JYkXOpzNEGNHRtrS5bjSe+fAIzF88EAKwpW4Ofv/Zzbb/qUMOQw0YvhhBL89BRyfxpInFYaG2kVrcYgFqLbOjol3u+xNp9azFv4zzdNWSLJJh1+cmCtjjits9Q3TedHW1mQ1BlQZsYGJkFDjeNvUm6XbaggG7oqMOuL9nXiqLoutqsgjYxWBQ/8+JQT5HV5PfikFu7BRnSgR1tzefqEVejb4e+uGjwRc1dChEREbUCLWKONiKitmzTwU3Ncl1tjjYH88zJOtp2V+3W7XPnB3fqvm8tHW014RrLfe9YfAfW7lurfa8GMHYBpRh2yeqvCFZIj1uyfQmA+nBGDGjsht/meHNQF6mr72jzZbijTRI8KYqCh059CDXhGnQIdJAeZ7ZCp4zZHG1O9jdexyX8d0NxOKwxaBOPE98zY7dY19yu2H14N64YfoVpPWLQbFQQKMBvj/8t/G5/2lbTdPG/jTabM446A2ccdUZzl0FEREStBIM2ojakrLoMr3/7Os46+ix0ye3S3OXQ98zmwcq0ZOZoExcDUAMkY3hk7AwTgzYniyFYUa8VjUWx8eBGHFF4hC78qA5V45vybzCs6zBtW0VdBeZ/Ox/Ldy9HcXYxfnfi7xrqETvawokdbSIxZAManoVdN6PYxZbMYg6Pfv4ogPp7FsMju2eY483B/tr9TdLR5lHk/zw4quNRabkukL6ONkA/rFQMD62G+onvmTEMe2DSA6gN11rOmSZ+/mVO6XOK5evJ4tBRIiIiotaBQRtRG3Ln4juxrXIblu1YhqfPfrq5y6HvmXUNZVoyQ0fFrjd1ZU1j0KZA0e2XbEebVXClHv/simfx+rrX8cMjf4irRl6lvX7r+7di48GNuGjwRTj3qHMBAC+sfgHzt8wHAKzbvw7BSFALbJLpaDNy2tEmDh1MtSNPDIzszqHOL5bWOdpMQmDZSq3plmxHm9O508ThnlZBm9liCADQIdDBtGtPJVutNZM4dJSIiIiodeC/2ojakG2V2wAAZTVlzVxJ2+Fk2KUds64hOxv2b8Cv3v4Vvtj1RUrHa0NHHcwzZ1x1NBKLYP3+9dq2eDye8Iv+4bDQ0RYNIxQN4UDtAcz5dA5ueu+mpOZdU0PB19e9DgB4a8Nbutc3HtwIAFi0eZG2bdMh/ZBcsUNJDK1kc7Q5qcXuvRcDvFRDl2TCEzU0Suuqo5IQeFyvcfC7Up9XzOk9Naajzbi4QhSJi1kA+sUPVFeNuAr9Cvvh/GPP17alEiye0/8cAMDYHmOTPjYVDNqIiIiIWgf+q42IyEKqiyGIx6U6dHTOp3OwrXJbwtxoTiUzdNQ4R9uflv4Ji7cu1raFY+HEoE3oaDscOozL/ncZLnn9EizcvBDf7v8W57x0DtaUrdH2sQqunHaEiTX0K+ynvwfhPsWho+noaPv5oJ8n7JeOxSCSCU9yvJnvaCvOLsYNx9/QqHM6nZOsMXO0GZ+bGLL2K6r/XBRlFUmf7w+P+iH+dNqf0DGro+n5nBjfezweP+Nx3HzCzUkfm4qm6DIkIiIiosZj0EZE5FAyoVs43hD0iKsgJiNdCwyIIZrqUN0hLNuxDF/v+RpXvn0lNtRs0F4LRUP4cNuHCecyhhHiHGXbKrZJJ///3cLfJWyzqtWOWIMxuBM76MSho8l2tB0OHcZzK57TFoO4ZMglGN51eMJ+yQZ4RpcPuzy5oO377qy6SJ22MmxjGTvanISyouO6HQcAmNR3krbNaSCUbEeb2MVmtuiCAgUBTwAvTX0JT51pvdqvOMQ02ftWdc/v3mRzp7GjjYiIiKh14BxtREQOxRFPGLJmpi7WEELJVnB0oiirCLsO70rpWMB6Uv9fv/NrHKo7BACIxWI4GD6IEpQAgLRbKhwNW64oaTcxvG2tDoeZqqHGN4e/wceHP4bL1RA+iF1NjeloA4BX176qfe1SXLpQRtWYe1ag4Oz+ZycV3qodbavKVmHpjqUpX1vkc/tw9tFn43/r/gfA+fuguumEm7BizwpdEGnsaCstKJUem86ONlWn7E4AnA3XTvXnsrkwaCMiIiJqHfivNiIiC2LXVDJdL7XRhi6qWDyG6lA1Vu5dmVSwUpRVpH1dFaxyfJzKauioGrLJyLqlIrGIZaeSk9DJ6t6drlqq1vDfsv8mvCbep9ghpwaHQzsPxYk9T3R0HZECRRrK1ERS72hTwyir8NJI7Whbt38ddlbtTPnaIrfLjcuHX659n+ychAFPAMf3OB4+t0/bJgZtz53zHB6a/JD0WDG0buyqo6qSnBLb86jETrR0zMWYaVx1lIiIiKh1YNBGRORQMiGZ2NEWjUdx0/ybcOv7t+Ldje+mdO2tFVuTni9OGzqa5LA4WUdbJBaxDIUauwKj004ql+IyvR/dHG2S4G5sz7G4ceyNSdfmUlzSecfEOdqSJZ7PaaeS09VrrVbatKoDSH0Ipdn1i7KKdCGcSOxANNtHJH7+zDpLjyg6wmmZOum470xjRxsRERFR68B/tRERWRDDrWS6XoKxhq6waCyK7ZXbAQAfbPnA8TnEwGvGwhn406d/cnws0BBkpCNoky2GIGps0BaJJ87Rtvfw3oRtLsVlOp+bbo62aGLQ5nP7UuoKUhRFGrQ1pgsqpaDNsHDBL4f9Euf1Pw9HFR2lC57yfHkJx3pdXkzpNyVhu7FLMdXFP0Q3n3Azuud1xy0n3GK5n/geOQnarDrazu50NkZ2HYkLB12YZLWtB4M2IiIiotaBc7QRETmUTGBVF6uDmn2Ix4nhzKaDm/DCqhdwyZBL0LOgZ8I5jIHXoi2LMH3MdMc1qIFUsoFQMCIfOpqOEMaM7Nle/ubl+N9P/6cLGNwut2n3m11Hm2yeNScUyIO2xkglaBM7xfp37I9z+p+jff+TV36iLfog7nfdcdfhiKIj0LewL1aXrcbc7+aa1gHou8xSVdqhFI//8HHb/cT3yMnztQraBuUNwpRxU+D1pvYet4aOtmQ6FYmIiIio+fA/jxIRWRBDqmSCJjGwEL8Wz3HLgluwbOcy/GHRH6TnkHWW2Xli+ROY8+kcxONxyznarISioYSVUsPRcKNXurQK/MzCM+MzsOxoM1kMQeWka0rGbOhoY5gFbcO6DDM9ZlDJIG3RgMGdByfUqBI72joEOqBvYV8A8s+BscMvk2GqUbKr8YrvXzJz27V2N429CUd3PBpXjbiquUshIiIiIgfY0UZE5FAygZXZIgri9rpI/TxuB2oPSM+RbLAVjUXx5vo3AQA/PfanWiAVjUUx6+NZ6JbXDRcPudg2TAlFQ8j2Zmv1AfXdR6kEf06ZPdtwNKwLZNyK2zRoe2XNK7hyxJXI8+fJO9pSXGVSURTLbrgsT5bWTeaUWdB29tFn46s9X0mP8Xv8eOLMJ/DBlg8wse9E3WviOcTOJ/E6smeciTnanBpQPABnHXWWtJtTRnz/0j2M0skqpc1lfO/xGN97fHOXQUREREQOsaONiMihZIZgmgZtJiHXr+f+Ggs2LdBtSzbY0nXRxaLa98FoEJ9s/wSvfPMKAJgGVapgNJgw8X6qE/877SIzDdoMgZlLcZkOb1y8dTEeWvqQ9LhkajGy62gTV4d1yixoy/fnWx5XlFWEcwecizy/fh42sTNNfE28jtoNpzvOMEdbOoaOOqUoCq4YcQVO63eao/3F9y9dQdu0UdNwfPfjceoRp6blfEREREREDNqIiCzoFkNIYliduK84LNIsrNtSsQWPLHtEty2ZoG1X1S7c9v5t2veKokiHY8bjcV2nmkwoGkoIMg6HDjuuRSR2IVk9P7OAJxwN645zKS5piKZavnu5dpxRqkGbAgUuxWUa7nQIdEj6nGLAJZ431SGqTjra+hf3x4Q+EzCk8xDT6zXl0NFkibWarTqarMn9JuPW8bem/NkgIiIiIjJi0EZEZMGsM81ODA37ms3RZsdJ0KYuXDDr41n4Zt832nYFijS8Csfs51oLRUMJIV2qQZvT4Miqo028D6vFEIzHGaW6GIIaYpmFO6kEbWItxqDt6hFXY2jnoSnVCOjnaNOFU4qC64+/HhcNvkjbljBHWyNWUs20THS0ERERERGlG/+lSkTkkCyE2HJoC9btW2e5r9kcbXZdObKgTQzqVu5diamvTMXzK59HWXWZbr9YPCYdIhqKhhx1tBmPrQ7XDx3N8+Xh7pPvtjxe5DTcisai2HRwk7QWsTvNajEEVTwel+5j1bV05fArMbbHWOlraqhj1nVX4C+wrEfGbOiox+XBGUedkdTqsgDggnz4qez5i3PepXuRh0wS76U9LYZARERERK0LgzYiIgtiSCbruvr1O7/GjfNvREVdhW672dBRkV0IJes8EwOkx794HADw4poXEzp8IrGIadBWG7aeuD8UDWmhktodpc7R5vf4E+b1suJ0AYJoPIrfzPtNwvZwNKzrTnMStJkFYla1dMntghnjZkhfswt17OZVk7EbOpps950Y4IpzxsmCtCxvw/x7ybyXzY0dbURERETUGvBfqkTUru2o3IFpc6fho60fSV/Xza9mGPYpfr+/dr/+NZOONvFrq+AnHo9LO9rE0Ek8lzF4iMaj0oAvGAk6Gjqqhllq91NlsLL+e3cgqZDDbtVLO+FYWNfRFo/HbSfsl83PlufLQ3F2sekxVsGWXedhKkNHdR1tSAzaku00Ez8rdkFbq+1oy+Cqo0RERERE6cJ/qRJRuzbn0znYWrEVDyx5QPq6GJgZh45aBUfivmZztFmFHGYT/oshkhikGbuuorGotPMrHAvbDh0NRoJazWooU15TDqA+VDLO62VFDEdSWdEyHA3rQqRoPPG+xE4nBYr02T1/3vOWdavvRY43J+E1u1CnIJD80FGzYM8saDu93+mW5xPD0xxfwz3YBW3JvJfNTTd0NE2LIRARERERpRuDNiJq19ROLTNWQ0fF7/ce3qtfoRSNGzpqthDCzEUztWGqdh1t4oIMqmAkmNQcbX63HwC0OeAKswqTGzoq3GOqHW1isCabe06tUTvG0NHWr7Cf7fBPNRA8uuPRCa/ZHZvKHG3iMxTfJ/V5ia9P6DMB14661vJ86qIYgD5Ikz1zr8urBVXsaCMiIiIiSi/+S5WI2jWzzjGVbiGDuHlH2x8//iOeX/W8dF+zxRB8LvPJ+c2Ctk2HNuG2RbfVnxcWQZtJR1soGtKFMtJrx0JazWpoowZtRVlFKYccKQVthjnaorHEIbFisAQ0vKcelwczx8/EPafcY3sdNeAa33t8wmtW96tAQZ4/z/R1M2ZDatXtYrjnZKVa8XOV5WmYg00WAiqKos0rJ+7b0omdiy15dVQiIiIiat8YtBFRu1QVrMKHWz+0XRjAaUcbALy05iXtaydDR6062qzCsM2HNiMWj+kCJxeczdHmZNXRYCSYMEebej+FgcKkhhuKz8iss8+KcdXRaDyaMARVN3RUUbT9A54ARnUfpRtKaUbtljqlzym4ZMgl6JrbteGcFsMUPS4Pcn252vd3/eAuRx1/4nsvPhfZsckGlIqi4F/n/gvPnv0s/B6/dJ/fjP4NrhpxFTrldErq3M3J7JkREREREbUkDNqI2pCmmrcoHo/j0c8exT+//meTXC8T7vzgTjy45EFUh6st9zPrRjO+ZnWc+PWWii04VHcIgHwxhNVlqwGYd7SpxJVBgeQ62uyGywajwYSONlVRVlFSQ0ftVm21E4lFEjrarIaOinO0mS02cXz34xO2iZ1kUwdOxYiuIxrOaTF01OPy6OZ165LbBT899qfa93069JEepxs6KjwX2bVSeW4FgQJ0zO5o+vqo7qPww6N+mPR5m5P4ftqtPEtERERE1FwYtBFR0vZW78W8jfPw8jcvt9rOknX71znaTzfvmsXQ0YTjTFYdBYBfvP4LAPKOthkLZ2DLoS22QVtdpM5yjrZILCJdfCAUDdneu3htY9BWmFWY1NBRXUdbKoshxPSLIUjnaPPI52gzC9qmj5mOGSfOwIk9T9S2Gd8LsWvP6n49Lo/uGRVmFeK8AefhRwN+hAcmyhfYUI9T2QVpqQRtbZH4nqTyWSIiIiIiagqtZxZkIrKlKIqj+ZwaSwweqsPV2nxPbVEyQ0dFVoshqCGBWRC08cBGy24kwD5okwVS6nFrytdYnlsk62hLJmiLx+NYt28dnvv6OWyv3O74OJV06Kjheeo62hSho81kaG6WNwtje47FF7u+0LYZ3wvxHq06Rd0uNxRFwT/P/ScisYj2vH4x9Be2x6rsgjSGSonY0UZERERELRU72ojakKYaOiqqDlkPvWxKZdVl+M83/2l0TWvL12LFnhUA9AsOpBq0bTq0SbqP2VxnLsWFg7UHLWsMRoKWQw7DsbC0vj9/9mfbOdpExqAtx5uT1Bxt0XgUN86/EavKVjk+BgAm9Z0EQL4YQiSuD1mMgZoawpgFmSqr+fLEjjO7jjYA6BDogOLsYsvricTwLJ0dbeJ8dcm495R7UZJdgrt+cFdKxze11tpJS0RERERtH4M2ojbEai6pdBJ/yT0cOtwk13Ti5vk349mvn8Xfl/895XOEoiHcvOBm3LboNtSEa1Keo83RSpEW+6jzuJmx62gTu8BknHYhGodlul3upDraUuliAxpCMmNHm6xTz+zerRabAPTvpzGUE+dQs5yjTXHeGH7TmJu0r5OZuy6ZoE3s7kvG4M6D8fTZT2NY12EpHd/U2NFGRERERC0VgzYiSpr4i7/dYgJNaX/tfgDQDQlM1pZDW7SvjWFWMh1tYiec6T4mx7sUFw7W2XS0RYP6VUcNYVMwar5qKQBM6TfFtj4FSkKHlFtxmy6GkMwiCXbUkMy4GEIwGkwIWXShmLAYgtiVJiM+f+O+Ytee3aqjVsSQ7oSeJ0ivndagzWSV0baGQRsRERERtVQM2ogoaeKwt6bsaNtVtQtvrnszoVvrk22f4NHPHpXWl6xNBxuGeUZiEX1HWxKLIThh7JBTKYqidbSZhVfBSNBy1dFgxDpoy/Xl2tbncXkSru9SXAnXUsOmoV2G2p7TzrAuw3D/xPu1gC8cC+vuZXvldjz11VMJNakURXE8dNRq6K14306GjiZLDElt52hLYphkqh1trQ3nrSMiIiKilopBG1Eb0lRztOk62tIwR1tdpA63vX8b5m6Ya7nfr+b9Ck98+QReXvOybvusT2Zh3sZ52veN6XbZeGCj9nU0FtWFa0l1tDkI4az2UedoK8oqkr5unGfNGAZZrVqqQEG2N9v0NZXb5U6Yj0227YGJD+DMo87Eb4//rfQ8yfjZoJ9hYKeBuqGjtZFay2NSHjpqMXRX19H2fQh3+0m3o7SgFNeMvEa6XzLEoMgscFUlE+g6CVDbAna0EREREVFLxaCNiJKW7jna3l7/NlbsXYHHvnjMcj81GPl679eW+9nNT2ZlV9Uu7euEjjaHc7Q9s+IZfF75ue21rIaOqh1tHbPkq4/aBW1WQ0ezvFmmAVGeP0/72qyjzbitT2EfXDniShQECrRtqc4XqJ5bDcnC0bDt4g3Ge9FWHU2io82sDqDh2Y7sNhJ/mfIX9C/ur71mO3TUJHBMJjxzsu/1o69Ht9xuuP746x2ftzXjYghERERE1FIxaCNqQ5psMQShGycdc7Qlew67bhZjIOY0eIvH47pOsFSHjr6x/g1H17IKUA4FDwEAOmbLgzZjkJZMR1vAEzAdkjqhzwTta7ci6WhTEhdDkJ0rmQUTxEBMDa7UbeGYg6DNcP1UFkNIOKfFHG2yes2Y/Uw6CYrUbsbRPUbb7juh7wT8/cy/o0d+D9t92wJ2tBERERFRS8WgjagNaaqho+nuaHOyQqcomY61ZTuW4Sev/gQLNi2w3de4oqUxaFO/fmfDO3hi+RONmqMtjrjpfbsUl/ZcC/wF0n1sO9os5mjL8mSZBmGn9TtN+1pRFHlHmyF8k4VJxvP3LuhtWo+44IIWtAkdbbVh86Gj5xx9TuLQUYeLIVgOHbVYdVQM8FKeo83BHGOPnPYIfn/i73HmUWemdI22jHO0EREREVFLxaCNiJImBkyry1Y3+fWT6Wa556N7EIlF8MiyRxyd1ypoUzug/vbF3/Dm+jexcu/KlGsznlsUj8e182R5s6T7GIM0Y8hq1dGW7c02HTraIdBB+7ouUqdfaACKNHyTMc4V1qugl+m+4kqZal1OOtrO638efjn8lwndZ1pHm83QUauwRjynMciTBYPJyvHm2O7TIdABY3qOSXkeuLaMHW1ERERE1FIxaCNqQ5pj6Oj2yu34eNvHTXJdldqxlG6RWER37kgsohteaAzGasI1CedwujhENBY1DdrEGgKegPb1mUedifP6nwcACQsEGJ9JqkNHxRCpLlKnC3nUr60+ZzeOuRF9OvTBtFHTdNvN5poDAJ8rMbjSVh2Nhk0XQ1DrEe8lGA2ivKYcQCMXQ1CcDR216yK9fPjlAICxHcYCAG4aexMGFA/AZcMuszyO5I4sOhIAcHLpyc1cCRERERGRXGr/KZ6I2jVjQLSzcifi8XjSQZ8adNitumiUqaBt3nfzEjraxGGyYqcZIA+cnA6ltepoEzu4/O6Gbq8OgQ7a9auCVbpjjMNpLRdDsBg6auzQEgMnJ51sJ5WehJNKT9ItKgFAt1CCkRiIqdfI8dV3fFUEK0xXSPUo9bUa7+Xdje/Wn9emo83pHG3G84v12n12B3YaiJd/9DIWvFs/dHl87/EY33u85TFk7p5T7sH6/esxuPPg5i6FiIiIiEiKHW1ElDTjRO7/WvUv3LH4jqTOURWswmVvXIY/ffon3XYn87UdqD2AJ5c/mdT1jGGNLGh69utnsbd6r/a9saMtjrjl3GeA86AtGo+ahjRq0OZW3LpQx6W4tA6397e8rzvG2MFmVWfAE5Dev2wYpKyjzQljp5dxKKnZddWvu+V1AwDsrNop7RwU9zV7jnYdbU5XHU2Yo00I8JzM0yd2CVLjZHuzMbTL0KQW2yAiIiIiakr8lypRG9JkiyFI5rb6cs+XSZ3jne/ewb6afVi0ZZEuXHM6ybmTlT1FuV590OPkF3Vj51wsHtN1m8lClnR2tHndXl2dbsWtG0oqSgjaLDraIrGINDSTBm2KeWeXFWNHmNWcZOL7rx7XOaczPC4PQtEQdlTusL2GjF1Hm9gtaHVu48+V+FqyC3kQEREREVHbxqCNqA1pqjnaGrPapmpn5U7ta7EjKZ2TnIvhk9hRFY/HE7ry7I5XjxODNlnXmOOONos52tRr+N1+XbjlUlymzycU09dqNUdbbaTWsqNN7MAyBn1Oicd5XB7T4Z9mNbhdbnTN7QrAfKiw1tFmEnbZdbT9cvgvUVpQiuuOuy7hNacBYzp+FoiIiIiIqO1g0EbUhjRZR5uDkMrMi6tfxPub38fuw7u1beLQQONcY3bMQpZ4PI5DdYe078WVLWPxmKN54Yy1xOIxXaeYLMxKd0ebMfAZ1W2UNPAy1moZtIVrpedQt2V5GlY6TXXoqDGgswraxPdCrKt7XnfLa9gOHbXpaCvJKcFfpvwFk46YlPCarqPNIsBm0EZERERERCIuhkBtUiQWwSOfPoJjS47F5H6Tm7ucNsfp8E6j7w58h+dXPQ+gfmJ/lRiIJbvQgVktoWgIB2sPat8bFzlwIqGjzTBHm2x4ZnXY4aqjM96FLAAAYzFJREFU8ahpSGjW0eZ2udE1ryteO/81fLTtI2zYvwGvr3tdWqvVHG2KolgOHQ14AqgIVgBAQkedU8aOto7Z5quOimGVOHy1a15XR9cwe47iZyxZYh1W953sQh5ERERERNS2saON2pRILIIl25fgzXVvYvHWxfjr539Ny3mDkSBe/eZV3XDHlqipho6m2tFWGazUvhaDIDEQS7ajrTokD7bqInW68Ek8rxi0vfijF03PLRs62qQdbS6vNOhSFAXje4/HL4f/Upv7zBhQykLAXx/3axQGCnHViKssh46K3We6jrok/soQuytdigslOSW4ZuQ19scJn+GSnBLLfbM91sNRGxO0ic/HqlOUHW1ERERERCRq9qDt0UcfRWlpKQKBAEaPHo3PPvvMdN8nn3wS48aNQ2FhIQoLCzFx4kTp/mvXrsVZZ52FgoIC5OTkYNSoUdi2bVsmb4NaiJfXvIz7Pr4Pz6x4Jq3nfX7V83ju6+dw9dtXp/W86dZUQ0fNwoVYPIbX1r6GlXtXSl83W/TgQN0B7etkOtq2HtqKn7/2c+lrwWhQdy7xazFosxrSaAzSjIshLNqyKOEYs+DPKBqLIgabOdo8iXO0GZkN55SFgKcecSqeO+c5HFF0hHToqBq0je05FgBQ4C9Iy9BR9espR06R7mv2eTIL2kZ0HYHRBaMxsttIAOZdZYVZhY7rNXI6R1s6F0OQLUZBREREREStS7MGbS+99BKmT5+O22+/HV9++SWGDBmCyZMno6ysTLr/4sWLccEFF2DRokVYunQpevbsiVNPPRU7dzZ0GW3cuBEnnngi+vfvj8WLF2PlypW47bbbEAjIV+qjtuWjrR9l5LzflH+TkfPa+XTHp/hw64emr8fjccs5ylRLty/Fb975DbZXbE/Yr6y6DGXV8p85M2bByLIdy/DMimdw6/u3ymsSAhHxHHYdbeXV5dgV3JWw/dkVz5rWWBuu1QVq4nnV0M3j8lh2AcqGjopBm4zd66rGdLSJzMIZs1VH1fu1Gjo6deBUXHfcdfjT5D+lvOqoriMsxU5LMWgTF2gYVDIIkzpO0lZgzfTQUav60zF09PaTbkfX3K6495R7G30uIiIiIiJqXs36n88ffvhhXHHFFbj00ksBAI8//jjefvttPPPMM/jd736XsP/zzz+v+/6pp57Cf/7zHyxcuBAXX3wxAODWW2/FlClT8MADD2j7HXHEERm8C6LMiMQiuPej+l+8h3YZinx/fsI+D3zyADYd3IS/TPmLLogA6gMAtcPtjx//EQDwyLJHMPvU2do+4WgYv3zjlwCA//7kv7arNKrM5kXbXpkY5OlqistXFxXPJ+tou+LtK1BWVoaSEn2Hk7iggqwWMeyJxBPnaLPrIBIXaQC+XwzBYu4zoH5FTys98npgR9UO3RxtQzsPxYq9KxrOEa4/h9/j1wVisqDLLGSyG9JoFdp5XB5tgYCqUJX2ejKrjtrV7aTWTtmdtK+P7ng0VpWtSqqOPF+eo/1kmnLo6MhuI7XuPCIiIiIiat2aLWgLhUJYvnw5ZsyYoW1zuVyYOHEili5d6ugcNTU1CIfDKCoqAgDEYjG8/fbbuPnmmzF58mR89dVX6NOnD2bMmIFzzjnH9DzBYBDBYMMvz5WV9fNIhcNhhMPJzRfVUqn30VruJ9V64/E4YjH9L75OzxGLx3Cw9qB00vZYLKadV3a+TDzf2nCtds3DtYeR5cpK2Eftdvt8++c4rvtxuvsPhoJacKJuqw3V6j7XVXVV2mv7D++3nLBeFAwHE56zen6r5xSJRKTHiWqCNSirLMPH2z/GKaWnIMeXo4VJxvd3Z+VO06Bjzd416FfYr+F5hINaTXWhOsRiMbjgQjgcNq3pUO0h3WvhcBiHg4ct76E6VG1aL1Af2sRiMdSGahGJ1j+PSwZfgi/f/VLbR33vXXAhFm347MWisYTnWhOq0V1jSOch+Hrv19LaxGPF86r1KnEl4fzRSFTbT0HD68bnYhSNNhwXj8Wlx2m1mPx8+RSftr13fm98vef7+4rrr6s+R6NIxNmiFzLi84lGown3aPWaUXv587e5sN7MYr2ZxXozi/VmVmurF2h9NbPezGK9mdXa6nXC6b00W9C2b98+RKNRdO7cWbe9c+fO+Pbbbx2d45ZbbkG3bt0wceJEAEBZWRkOHz6MWbNm4Z577sH999+PefPm4bzzzsOiRYtw0kknSc9z33334c4770zY/t577yE723qy7dZm/vz5zV1CUpKtd+v2rdgX3qfbNnfuXEfHvrTnJWyo2YCLul6E3lm9da9t2rkJZcEy2/Ol8/nWRGu0YdRvvvcmwvEwegZ66vZRX/94ycfYl7MPu3ftRnW0fo6wt+e+Da/Lq9vPU+HR1b/w/YXaa/Pmz0Oh19mcVp9VfIay/YnDTZcHl6Oswvw5ra9ebzo0XLX4w8VYsH8B9ob24rWc1zC181SUl5cDgPb/TrxT8Q6G5w9HWXn99Q4ph7Sa9gb3oqysDNXuasydO9e0pq+qvkJZbcNrS5YuwYHwAZQdNL+Hbyu+RXnQvF7XIRfKQmX48KMPsaNsB2pjtVi8aLGuhtr9taiKVmFTzSZk7crSXvts2WeoXqOfA27brm264YuVwUrtPTAS35MD4QMJ97192/aE9608VK7t565wa6+Lx8re62g8qu0T9AS1fQ6WH0Q4rv8LKnwgjIORg9Jzdavthk21m5C7LVc738qvVmJY/jDt5211+WqUVSXes9OffRnxvt9f+H7Cz4b6muuQy/F12vqfv82N9WYW680s1ptZrDezWlu9QOurmfVmFuvNrNZWr5Wamhr7ndDMQ0cbY9asWXjxxRexePFibf41tcPg7LPPxm9/+1sAwNChQ7FkyRI8/vjjpkHbjBkzMH36dO37yspKbf63/PzE4XqtUTgcxvz58zFp0iR4vc6GBzanVOt9Z947cFXqh6lNmSKfgN3oiZefQEluCWq612DK8fpjPlj4AcL7w6bny8Tz3VezD/96618AgDfCbwAA7hp5FwaXDNbVDACjRo/CuF7j8NL/XkJFsAIAMPm0ydocVup+R3U6ClNOnqLVO/6k8Xh+Xv2Q7BNOOgGlHUod1RZeF8aKr1ckbB945EBs3LARAHDa6aclDBks3lmMxZ8stjz38WOPx/yP5qMEJTioHMSUKVPw95f+jvLycnTq1MnxfF8BXwDDBw3HsuXLANQPZVTfu+8OfIf/LfgfirOLMWXKFO35GHUt6oqqAw1DJ0cfPxpbK7bim7Xmc/Z1yeuCcGXYtN5+Rf0QOxDDmLFjsGzZMlSHqzFxwkS89s5r2j453hxkhbMwuHQwxvYci8UfLQYAjB0zFif0PEF3PmPtIwaMwOa1m6W1iZ/dsuoyvPr2qwDqO9rKy8vRr28/TDlF//neVbVLq+2IoiMwZeKUhOvKfiaisSiefvXp+meS20XbZ3DlYMzfNB9Ldy7V5gYsySmBt9orPdcUNHz/wssvAABGDR+FyPqI9vO26fNN2LVZP4ef+H6nYmfVTu2+J02clLAwg3r/fQr7YMok6+u0lz9/mwvrzSzWm1msN7NYb2a1tnqB1lcz680s1ptZra1eJ9TRj3aaLWgrLi6G2+3G3r17ddv37t2LLl26WB47e/ZszJo1CwsWLMDgwQ2hQ3FxMTweDwYOHKjbf8CAAfj4449Nz+f3++H3+xO2e73eNvOBULW2e0q2XpfLBZdLH+44PV49rii7KOEY8bxW50vn84274gn3snb/WozoPgIvrX4JJTkl2uuKS4HX64Xb7da2eTwerRZ1W8AT0NWnuBXttagSdVy74lISagOAKKIN212A12N4ju7E9yfhvpWG+1ZQf19qWKUo8uvKVEeq8caGN7T944jD46lf/EC9b7/HD6/Xa3rO6ki17jW3241IPGJZQygesqzX6/n+eq6G5+j3+nX7BWNBuFwuZPmy4PP6tNd8Xp/0synK8mWZ1ice6/c1XFP9jxQ+T+L5A75Aw2ff4034TBnPq/LEPQ2fRVfDZ7FPxz64suOVWLt/LfbV1nefuhRnP1/qPn6vHxFEtJ838XOvevyHjzfqZ1F8T2TPfdpx0/CvVf/C9WOud3ydtv7nb3NjvZnFejOL9WYW682s1lYv0PpqZr2ZxXozq7XVa8VxtpDhOkz5fD6MGDECCxcu1LbFYjEsXLgQY8aMMT3ugQcewN1334158+Zh5Ej95NE+nw+jRo3CunXrdNvXr1+P3r31QwGpbbKatNyKOKG8bNGB5mBc8RKoD8o27N+Af636Fx7+9GFtu7iwgEo2d5lxwQRxEQJ1An4nzBZDEBcyUOuvqKvA2vK1lseZncOM3SIGKuNiCeq5jYshmK32KC4EAHy/GILJap4qu+eoXjMai2rvkbHrTd3uc/t0XYFOFgEwvsdmZOeSPVdxUYNkFkMQ70nWhSh+PmNIbkEBY53GBSEm9JmAbnndkjqn1TVk9Z9+5On417n/Qt/Cvo26DhERERERtS3NOnR0+vTpuOSSSzBy5Egcd9xxmDNnDqqrq7VVSC+++GJ0794d9913HwDg/vvvx8yZM/HCCy+gtLQUe/bsAQDk5uYiNzcXAHDTTTfh/PPPx/jx43HyySdj3rx5ePPNN7F48eJmuUdqHSqDDS2gjVmpMJ3C0cTAye/241DdoYTtaoAlBo1OgjYxoLNbLVNktgBBXaRO+zoYDSIPebjm7WtQFarCVSOuwhPL5UM0ReJ9K4oiXVUz4AngcOiw43rFc8fisYSgbXDnwRhYPBDf7NMPCTVeI4647h5ljK/3yu+FbZXbtO/VsCoSi2jP0WxVTmPQZrd6JwBtXj47YoCmkgVtyV5fRrpaKuSrpTrRq6AXVmGV6blSrVPkZNVUp8OYiYiIiIio/Wi2jjYAOP/88zF79mzMnDkTQ4cOxYoVKzBv3jxtgYRt27Zh9+6GjpTHHnsMoVAIU6dORdeuXbX/zZ49W9vn3HPPxeOPP44HHngAgwYNwlNPPYX//Oc/OPHEE5v8/qjppfqL78G6g40+R7qZdbTJQq5o7PugTUkM2sSgyuv2So8DEgMiK+JxoupQw0T94WgY8Xhc6wr7+/K/OwpXxI42BYq0C06dey5Zb65/Ez9+5cd497t3AeiDJSfhTDwex8Hag5b7GOu9eMjFKPAXaN9rHW3xaEaCNqcdbbJzSTvaFPvAyY6s0/S8AecBAMb2GCsNU2X+NuVvuPeUe9Ezv6flfsl03mXyHERERERE1P40+2II06ZNw7Rp06SvGbvQtmzZ4uicl112GS677LJGVkatUapDR8UuMVmQ5TQIMFq8ZTFKckowsNNA+50NzIZQyoKnx5c/jh75PXR1qvchnsfY7aTraEti6Kh6bo/LoztHdbghaAtGgyl3nami8Si+2v1Vwj5+d+Kciiqf2ycNKQHg+VX1Cz98vL1+zsZkg7ZYPJYwHNWOoij64Z+uho429f2yCtrEwEfWhSY7xglZkCTblo7uMNk5flD6AxzV8Sh0zumMy95w9ud1z4Ke6FnQM2FZbePnwclzspOOcxARERERUfvTrB1tRC2F2KVkNiwyWavLVuOhpQ/hlgW3pHS8LCwShxsa/WHRH3QdY+p+YoBm7FjSzdGWxNBR9Tjj+YwdbcmGUkDifHN3fXhXwj5WQZvf7XccuIrBo5NgJRgNYl/NPkfnVrkUl+7c0jnaTOpNpaMt25vtqC6nQ0fTETiZ1d0trxvcLnfKQbbqZ4N+hiMKj9C+T0c3mlhzuv5MICIiIiKito9BG7Ubq8tW49+r/i0d9mjX0ZaK5buWN+r4ZIM2ANKONnFIqHHoZqodbeozNHbIGTvadldZB22y+cTsFkNQoFh2bbkUV8IQWTPJdrTtrtqd9NxiChT87oTfIc+Xh+uOu04LgTYc2KCdK51DR48uPtrRYhGyc43tMTZhWzpCK7vh2I39mSsIFGDOaXO079MdDjJoIyIiIiIip5p96ChRU5mxcAYAoCirCJP7Tda9JoY76fqlemvF1kYdL1sMIRKLoCZcY3qMWLsa4oidasZ7EzvakpmjTT2PMdASgzYnHW0elwexeExXh+y+RW6X2zJI87g8lsNHRWJg5yRQ2lm103YfI5fiwtHFR+P5856HoihYXbYaALBw80LdPmb12QVto7qNwue7Pte+z/ZmY2DxQKwsW2lZl3i/d/3gLiz7eBmGdx2euF8GO9oyJR3hoBgC5/pyG30+IiIiIiJqHxi0UZsi65yJx+O67buqdiXsIwZQ0jnaUlghceuhxgVtwWgwYdsr37yiLS4gI9apdp0FI8GEbbLvUxo6quj/CBE75ELRkG4oqYzb5UY0oq/JOHQ04RjFbbmypt3rIjFocxIGlVWXOTqvSD2v+hmUBVdm1/a6vbZB2+9O/B1+t+B32HBgg7bP0cVH2wZt4s9Ep+xO6B7oLt0vLR1tNkN5090xlq452h457RGEo2HHw3GJiIiIiIgYtFG7IwvjxF/0zVbUTFZZTfKhjEjW2WUVsgHyoaNigGZcSEEXtKUydNSisywYDdoGKLIQx64TzUlHm1PieZwEbWrHXsATcNwBaPy8yeozG1rpd/ttgzaf24cji47Ugja34kaeL89RbdeMvAZVwSp0ze2Kr5C46IRVbclo6pV807ViaN/Cvmk5DxERERERtR+co41avAO1B/CnpX/C+v3rbfeVdc4Ywx7ZPrKAqrk5GfpoJBs6uungJm2bMUQUu8eSGTqqBnZWnWPhaFi6QqrIpbhQnF2s22YbtNl1tNkEcSJxUQWxC8oYaAU8AQDQVlFVvzdzdMejTc8lC9qsOtqs6lKJ+yiKghxfjmV9qilHTsH5x57vaN/GsAsxU+kYteL3mC+WQURERERElEkM2qhZLN+1HNsrtjva95FPH8H7W97HDe/dkNK1jL/E23W0ZTJo+2TbJ7jnw3tsh1QC9osCyBhXHa0KVuEfK/6h2yZKddVRsznaRMFo0LY70O1y4+6T78blwy7HxYMvBmAftNktduBxeRx3NJl1tGV5snT7lRaU6moLuM2DtsJAIUZ0HSE9r+x7s22As442IDG8y/E6C9qaim3Q1shVR1U/O/Zn6NuhL07vd3pazkdERERERJQsBm3t3IHaA/jPN/9BRV1Fk11z44GNuOODO3Dt3Gsd7b+90lkgZ8ZJR1tjgjYnnWdqkDDrk1lYtnMZ/r3632k5r9l1gPr72Hhwo+51Y4eZ2NFmtwiBSH1GVsM0w9Gw7bN0wYUe+T1wdv+zkeWtD7ecDB21uq7H5XHcIWW2GELP/J6683XN66o7zqpjyqW4dOcyft52VO6QHiPjZI42Y+0AHHe0JSvVzjO7Odo653RO6bxGFwy6AI+c/oj2WSIiIiIiImpqDNraubs+uAvPfv0sHvjkgSa7pjiU0YnGDitLCNrS2NH20daP8KOXf4T3Nr2XVA37a/Yn7FNeXa7rdEs2aPO5fbpnNX/jfNy26DbLOsSOs1g85nh+Om2ONoshnMFo0HboqDjkUR3GKVsEQneMg8UQnDJbDKG0Qykm9Z0EAJg6YGpCUGQ1dNSluCzDMdliD2ZBlLGjzezejJP/t7aOtt+d+DuM7j4aD056sIkqIiIiIiIiygwGbe2c2vFkt0JhOolhz4dbP8TcDXPTct5Ve1dh06HEEM84LM2uo80uHBI9sKQ+oPzbF3+z3M8YcBnDlkN1h3DZG5fhp//5qbYtmQ4zoD70Eq/zxvo3tK/V4CVhjrZ4Qx3fHfwOF/73QhyqO2R7LW2ONoshnI462oQARg29HM3RlqbFEMyCNo/Lg2tHXYvbT7odPz7mxwnhrBrCydgFbZcNuwwDigckHCOTakdbri/XtL7mYLcYQte8rvjD+D+gf3H/JqqIiIiIiIgoMxi0UZMTu64eXPIgHvviMew5vKfR5/39+7+XbnfSoZbpOdoSVvs0fL/54GbtazUYtOvsMvJ7/KZzXXXL6yavwxC8VYerteBz7oa5+HL3l9LzqcdZhVpO5mhLKWhz2S+GYHwOYqAmEs8jdoV5XB54XB6M7DYSPrdPWwRBVZxdjOfOeU5+fcVtGY71LeyLByY9oOs6a8yqo8baASDbmy3dr7FSnUvNyYquREREREREbQF/+6EmJwuyjEFGsqwCAOPQU9kv/ekO2oz1GM9p/F6cU0oN2Brb0SaGS6UdSgFYrzoqbltdthqPffEYbl98u/Ra2mIIFoFXKBqyfZZiJ5Zab23YelEGl+KyDPhkNRkXNzBeUz2vynj+YEQfemZ7s03DO5fiSlgFVMYYjsl43V7dMzI7pqnmaBN1yekCADiq6CjbfRm0ERERERFRe8HffqjJpWuFQVFNuMb0tWTnaHM6T5kVu2DNGHCJoY06T1tj52hTjz+++/EY3nU4AGBb5TbMWDADX+35CoB8mGwkFsH6/estr+Vk6Oi+mn1JDR1VFxioDluvyOpW3JYhVUGgICFcbWzQdsGgC3TfZ3uzTcM+u6GjKidzyfncPkchlfF5yGqzW5AgWfdOuBdTB0zFreNvtd2XQRsREREREbUX/O2HmpwsfGlsCFARNF811W6Otj2H92Dd/nWW9SXLatEBu+/V7r5wLLmONrPg57wB52mhzqG6Q1hdvhp3fngnAPOOtn01+yyv5WTo6Nd7v7Zf2MCV2NFmFZoC9c/WKrjpEOiQsM1sFUoxKBSDL2OAOLDTQJx/zPna99nebNOgzHHQZgjHTuh5gu57BUrCMFQz6kISVtIddpXklOCSoZegKKvIdt90h3xEREREREQtFYM2anKNXUVUpqLOPGiz62i74s0rtEUhxP13Vu7E7qrdKdVj7BSz62gTX1c7upLtaDMLCLO92aYdYLLuvXA0LF0VVbW2fC3219a/LhumWZxdjA6BDqiL1GFN+RrLmmVDR+062oLRoG3Q5nSONjGgsupoA6ALlKyeqUtx6e7LLGRyGf74vXHsjfjhkT9sqM3jh6IojgKyU/qcgiMKj8DUAVNN92nOrjK7xRCIiIiIiIjaCufL8xGlSSaGjlYGK82vh7jumnbdNbF4DHWROlz99tUAgNfPfz1hn0gsgvLqcstzWH1vFcSpQ0eTHcIq604D6ufrctXIQxZx1VHxPLKOtqpgFV5c/aJuNVPZ0FG/24/ued1xqO4Q6iJ1ljXrho466MoCgLpIneWwyw6BDglhrtn+uo42w2IIRuJKnlneLMtOtVQ62jwuD/oV9Wuo7fsQ00lI5ff4Mee0Obptlwy5BB9s+QBje47FC6tfwI1jb7Q9T6Zw6CgREREREbUXDNqoySU7NFMMyRZuWogJfSck7GM1dDQWj+muaRdcxOIxVAWrtO9lnWV3fXCXNs+ZjDEksx1KGk8cOprsczIL2syGOf7frv/D6d1PT9gejUexr7YhaIvH41AUBX/57C9YumOpbl9ZR5vX5bVcJEEkGzpqx0lHm9V1RE7naAMaFpQw7mvkdOiobLtszjq7usxMHTgVUwfWd7j9aOCPHD/fTODQUSIiIiIiai8YtJEjdZE6/GnpnzC251icVHpSo87VmKGjc5bNwYBOA9Atr5tuu93Q0WRCq2g8qgs3ZAsGWIVs6jWN59QtuGDR0ZbOoE2BgixPljRo2la3Dd8d/C5hezASxIHaA9r3ccShQEkI2QB58ONz+ywXSRCJz9lx0BaxDtoKA4UJ27rndceqslUJ28VAUDynLCjsVdALt5xwCwr8BZb1JQwdNVt1VBJ+iu+TWoPP7cNFgy9CMBJ0NB+aTHOGbADQKadTs16fiIiIiIioqTBoI0feWPcGluxYgiU7ljQ6aJMFSFahkjGYO1B7IDFos1kMQQy27IaxxeIx3TXD0XDSw11lQZoYhDmZoy0dQVuWN8tyni/ZNbZWbNV9H41FEYrL54uTBWo+t89x55UYNqkdXHbiiFuuOmqco+3eU+7Fhv0bpPuK1xRrMav/xF4nSrefXHoyFm1ZpJ0nlaGjxn3FobQ/OeYn0nO0dDPHz8SHWz/Ezwb9rLlLISIiIiIiahIM2siRQ3WH0nYu2dxjjV3pU+0Ck4nFY7prOpmjTazHGGDd++G9tvXI5mgLRxtWEbUaWprOjrZsbzYA8znKZNfYWbVT9300HtUWhVCg6EJIWeeXx+VJaeio02MA67A035+PPH8e9lTvAQAM7jwYmw9ulu5r2tHmsCNPJQZ7jlcdlbwnjamhJRrVfRRGdR/V3GUQERERERE1Gc5QTY6kc44lWSAkG55pdm1ZOGS1cEAccdPQStapZgzmwrGw7vVPd35qei2zGqOxqO6+91TvwYdbP5Tury6G4DRoUwMb2TPM8ebU72PSARaMBG3PH41FsatqFwDoJusH6jvmjGQdbQOLB0rPLQZLiqI4HuJoFhzecsItUBQF08dMR98OffH7E38PwDy0Eq9ntxiCFfG9StscbQ4Xh2hKmVgxmIiIiIiIqC1h0EZSdZE6rNu3TguiZPNMLdi0AH9e9ue0dF6ZnWPB5gXYX7vf9pxWQZ3VHG2y42LxmG672SIDlvVIOtaMgd2DSx6U7q8OHbW6J5EaCqXS0RaMOgja4lHsPlzf0dYjvweyPA3hWsesjgn7y4K2Hw38EX457Jf4+aCf67Yb63IatJmFV+rQzh75PfDI6Y9gTM8xAMy75ZJZDMGKGEC5XW5daGcWUtsNHW0LHW1ERERERETtDYeOktRt79+Gb/d/i+uOuw6TjpgkDQseWfYIAGB41+Gmc1fJGAMnwLwj7a+f/xUulz5USbqjzTBHm925KoOVeHPdm9r3kVgk6U4e2dBRq8CuMUNHvW4vgtGg9PxqV5RZMFUbqZVuH9VtFL7Y9QXiiCMai6ImXAOgflimeK6O2YlBm9ftTQiJfG4fzul/DgCgJlyD/377X2ldjQnaLh92uen+ZqGVuL1RQVsGho429wIGMgFPoLlLICIiIiIiatHY0UZS3+7/FgCwcPNCAOYrJwLW86PJiHOVqWShkiyQA+TDPZPpaBP3lV137b61mPvdXMt67chWHQ1F5QsKGPdPduio1dxmapBkNnS0LlIn3d4jv4d2TDQe1YaY+tw+XRec2N0m1mOsySzEMoZQTodLivdzbKdj8Y+z/4Gz+59tur+TjjYniyGYMQ4dFbWFoaPXj74epQWluGrEVc1dChERERERUYvGjjayJPtlPx6P64I3s2GJZpwOHa2KVkmPl3WX2a1aKna8iUGdVSecyizws2IM/v7w/h9Mu8eARna0WQVt379m9h7VRmqlIWqBvwBuxY0IIojFY1pI6Hf7de+fLMCTDR0Vry+GScbjnXRx9czvmdAxVpxdbHmMWUebWedZMgszyM4pPlOzkNpu6GiePy/lGtJtQt8JmNB3QnOXQURERERE1OIxaGvnXIrLMtBRh4qJQ0cjsYjpkDsnpENHJR1plZFK6fGycMwqMDPOuSYGdU7CrFTmaDOe1yxki8QicCtubbEBoGGONqdBm1X3lfo+mb1HxtBUVRAoqA+CovXPVu1iMwZhsvPKho6ahWvG49U55WSOzD4SPxvxM4ztPRbr9q2zrCGhJpPVUc1qTLajTfx8Oe1osxs6mudrOUEbEREREREROcOho+2cXUjh99R3tIlhTCgaSpiTShSPx7F0+1LsrtotPafTjrbDUfmQ1GRXLTWuIipey0mYlezQ0e0V27Hn8B7T10uyS7Sva8O1+Nvnf8O/Vv1L21YTrkE8br5SqpHVpPlqMGY2dNSM2tEG6IeOqp8HlezzI+1oM1nR0xg29S7obVpTwBXA5CMmoyiryLIrTkYWnOX6ch3V6IT48+BW3LpgOtWho/n+/KRqICIiIiIioubHjrZ2zmxFRJXa0SYGCeFYWNeVZgw6Pt/1Of748R8BAG9e8CaMHA8djVRJP6GyUM1uMQSzcC3dHW1VwSpcO/day338Hj98bh9C0RBqwjWYt3Gevl7EUROuSU9Hm83QUTMFgQIt9BE72oxDiaUdbTZztJkNIwWAI4qOADbWfz2+13h8uO1D7TXxs+pkVU9dTZIwMterD9rStepowtDRJFYdFZ9NQaAgqRqIiIiIiIio+bGjrZ2TDRsUAx41aBPDplA0pJvYX4GCeDyOv3/xdyzeshjflH+jvVYdqtYm91fJOsRkQZnZHG014RrsrNypP94Qvt1+0u3olN1Jux/d0NF4ckNHw7GwdAEGmYN1B2338bq82hDJl9a8JN3ncOhwkyyGYKZDoIN0MQS/x4+7fnAXuuR0wb2n3Ou8o83hHG19OvTRvr5g0AU4++izpcc5WdVTJHtGCR1tQo1WXYIyVh2eHDpKRERERETUfjBoa+dkIUBtuGE+MbWDSexgC0VDCWHZku1L8NaGt/DQ0od0HTw//c9PcdFrF+mCCKcdbTXRGmnNf/nsL7j67auxYs8K0+NHdhuphT3GxRAy2dHmpBPK6/Yi21MftM3fNF+6T3W4Oi1DR1PtaMv35zcMHTV0tA3rOgxPnvUkBncebDpHW6pDR0s7lMLr8iLHm4MuuV30K5TCWVecjLSjzZe+jraji4/WnUf8GTBbDIFDR4mIiIiIiNoeBm3tnGxYmzhxvxqQiMFaKBrSBW/ReBSH6g6ZXsM41NTpHGt2q32+v/n9huMlHXHqvcXiMV1oteHABsxeMhtl1WWWc7uJ9ToNvZycz+PyaJ2CZuw62jrndNa+tupoU+doS3bBioAnoIVZ4qqjThZDyPJkWS6GoAvPDMf7PX48ddZTePyHj8Pj8pgGapnoaLPbX+axMx7D5cMux48G/EhXj26Yq0nIabfqKIM2IiIiIiKi1odztLVz4i/2K/aswAurXsA5/c/RtqkBlhh6haNh3dDRaCyqC4VkHTz/+OofWLtvLe6bcJ80QJOFSpG4804yWcCl3lssHtMFH1/t+QoAsKtqF24ce6PtucPRsKMADXDW/eZxeUxXIVXd+v6tjuZeA2w62lIYOvrCeS/ojkl2MYTCrELUhPXdiGLYlOdvGBIpq6soq0j72iyUs1q5VMZJR5s4z5rTjrYe+T3QI7+HbtsRRUc4OlZWt/hzJT4nIiIiIiIiah0YtLVzYih226LbAABrP16rbVMDMGNHmy/a0NnkJIR6a8NbAICPt30snaOt0UGb0NE2rtc4AA33Fo/HEUVijZsPbXY8dNTpHG1Og7aKYEWjziUGQU4COaswKteXi8OhhhVe1YBHXAwhFHPe0VaUVZTwHpvNPWYXkukCNaSno02BgjjimNB3gm4f8TOU7NBRAHj41Iexcu9KTD5iMlbuXtlwPZOho0O7DMXCzQt128T3wbjwBBEREREREbV8DNraObuQQgvaDHO0iZ03kVhE1w1ktQpkNB6VDx2VDP0Mx62HjorXUcO++ybch2NLjgXQcG9xxKVBmbETz0w4FnY+dNRi9VOVx+VJ6PhS5fnyUBWSLwIhEju0HC2GYDFHW3FWsS7gUWlztIkdbQ5WHS0MFGJ/zX79uYTATBwSaTd3nGlHm3CcWZBldp5HTnsE2d5sdM7trNsnlY420ZEdj8SRHY90XNNJvU+Cz+1Dv6J+2rZBnQehKKsIfTr0cXQOIiIiIiIialk4R1s7ZxWKAfKONuOca9FY1HHHV0VdhePFEOw62sQgQj1eF8AIc7TJArA44o472oz7ndT7JNN97XhdXtM52kZ3H62bf82MeJ9ul9v0fTSbo00cntkpp5P8Gt+HY6+seQXV4fqVY41DR2VBWb4/33KOtmTmHhMDL/Eek+5oE+opCBQkhGwAbIc/J8NJUKcoCsb2HIuSnBJtW8ATwNNnPY3bT7q9UdcnIiIiIiKi5sGgrZ1z2tEmBkjGVUej8aiuG8jKvpp9judos+toE6lBmmzuriXbl2DBpgXS4xx1tEUTO9rG9hwrr8PhYggzx8+UvuZSXAnDM8XXVGIQ5FJcpu+j2u2mKIpun+Fdhmtfd8zqKD1WDdFWljUMgzR2tMkCKUVRErrszOZos5urznTV0STnaPO5fbho8EX46TE/1YWMIqddi04cWXQk+mT1wal9T036WI/Lw242IiIiIiKiVopDR9u5VIaOGhdDiMQiuiDFKmzaX7vfctXR6lA1lu9ejmElwxCNR+GF+bBI2dBR2SqV73z3juk5nAz1DMfCiEEfwpgNeXRyPq/bi0GdB+GEnifgk+2f6F5zKS7Tubl8bh/qInUJ13crbrhdbkSjidcWO7lcikt7P7O92dr2DoEO0uvJFiowdrSZMXZ0ma06Wh2qtjxPulYdBYCfHPMTy9fTGbS5FBcu7HohpoyckrZzEhERERERUcvHoK2ds+ucMVsMQQzeYvGYLuywCpv218iDNvU6939yP77a8xUm9J6AcCyMAORDLNXaD9QewIOfPIj9tfVzgonhkJOuoFSHjpoNDXTS0aaGR7JzWHW0eV1e1KE+aEu2o81IHLpaECiwrNPJ+RL2MwwdNVv1VB2SakYc4mk2R5vToM1OOoM2IiIiIiIiap84dLSdc9l8BNTgyLgYghi8fbrjU1QFGybwtwos9tfutxw6+tWerwAAC7csdLTq6P0f34/V5au175MNYNIdtDmZo03tCpOdw+1ymwZt4nZd6ORym3bYiceI8+hlebK0rwv8JkGbJByzCy/vPeVeANYdbSK7jrajOh6lfV0TbVhAIpWONjtO5xkkIiIiIiIiMsOONrJkthiCOHR0w4EN2HBgg/a9VdhUEayQbjd2wcXiMUdztO2p3qP7XjePmc1CD4CzDrRwNJwQwshCqGg8irX71tqeT+0mM+toMxueKXaTGRcGMO1oEzrLxLBQ7GgzW5zAbkVQo1+N+hUGdx4MIPHezM4lC11F4hDX8lC59nUmgraT+5yM/679L4Z3HW6/MxEREREREZEEO9pIIwssZHO0haIhXdBmZPWamXQN20t2kvwZC2fY7rNg84KEgFAWkr1d/jbeWP+G7fnsgjbToaNCaGa8TydDR8VFCHQdbWZDR02GezphHGJqrO/Xx/0ahYFCXD3yattz/Xjgj6EoCo4vOF5aW7qCtmxvNp466yn86rhfpeV8RERERERE1P6wo62dEyf597q8CEaD+tdNgjarrjXjOZxw0llmNH/T/IRtmZi7S0YWkq08vBIl2SW2x6qLHUiHjirmQ0fFezN2tJmFYmI41zmnMyqDlQnXNutoMz6/HG+OdD9ZTXZDR0894lRM6jvJ0Tx6Fw2+CGf1OwsfLPhAer50vs9c7ZOIiIiIiIgagx1t7ZzYSSYLfmLxGD7Y8oEW0AD1Q0OtutaCkeSDtkx0tGUyNDGbo80JtaNNtrCA1aqjZl1cVh1tYmhXktMQAophqNOho4+d8Zh0PxnjYgiy98Lp+6MoCnJ8+pDPLHQkIiIiIiIiak4M2tqhg7UH8c+v/4my6jLd3GNxJE4GH41FMXvpbN22cDRsHbSZdLSZBUgA8Mo3r2Bn5U670m0lO0dbqpKdv0ykzsEm60KzGjqqC5eEkMqtmC+GIIZ5YtBWG6nVvjYLDcX6fG4fCrMKpfvJNCaIdEL3PrMLjYiIiIiIiFoIDh1th/6+/O/4ZPsnWLJ9ia6TTBaeyTrNwrGw5ST2Zh1tXXK7YGvFVtPjrn7bfr4uO00xdFSBkpaOtmRXHTUbLmnsaHMrbm0orniu0g6l2td2w0DV88i+NiNeS9atl07i/XK1UCIiIiIiImopWkRH26OPPorS0lIEAgGMHj0an332mem+Tz75JMaNG4fCwkIUFhZi4sSJCfv/4he/gKIouv+ddtppmb6NVuOLXV8AAHZU7dAFabJ518TOJ3E/cRVSI7OOti65XZItNWmZmrtLpCiNC9qs5mizWnXUauioWbebeI2Tep+E8b3G45fDfolxvcZheP5w3DL2FtM6xetZ3e9Fgy/C0M5DMa73OGkNmSDWJuvEJCIiIiIiImoOzR60vfTSS5g+fTpuv/12fPnllxgyZAgmT56MsrIy6f6LFy/GBRdcgEWLFmHp0qXo2bMnTj31VOzcqR92eNppp2H37t3a//797383xe20CuLqkzXhGst99xzeo319bv9zAdQPHT1Yd9D0GLOOtsKA86GHqUr3HG3je41P2OZSXBmdoy2VxRDE4E3sVjOuVHrTCTfhnP7nwOPyYErxFIzpMca0Tl2XnMUKpD855ie4+5S7Mz5cVJTJhS6IiIiIiIiIUtXsQ0cffvhhXHHFFbj00ksBAI8//jjefvttPPPMM/jd736XsP/zzz+v+/6pp57Cf/7zHyxcuBAXX3yxtt3v96NLl8x3ULVG4hBRu9U+91bvBQCUFpSiW143AMCOyh3YVrnN9JiqUJV0u3FC+0xI99DRkpwSZHuzEwLJRnW0eWw62kzmsrMaOioGYfn+fFw76lrLFUydEJ9lKvfrc/ss5/JrDAZtRERERERE1BI1a9AWCoWwfPlyzJgxQ9vmcrkwceJELF261NE5ampqEA6HUVRUpNu+ePFilJSUoLCwEKeccgruuecedOzYUXqOYDCIYLChC6uysn6FzXA4jHDYfIhka6LeR0VNBQ7VHnJ8XChWH5QUBYqgxBTEYjFsOrjJ8piKugrpdp/iQyzmbHVRdd6teDzu+BgAiEVj2vxx8Vhyx8pEohHke/NxOHi4YaNSfx3x3MnU6467EQ6HpfXFY3G44i75OeLQtovXicfiutdisRhGdRkFAKafX3W7+v/i9bRjhHMqcSXpnwW/y4+6cJ1lHU4Z6xXvPxKJtLifU2O9LR3rzSzWm1msN7NYb2ax3sxivZnV2uoFWl/NrDezWG9mtbZ6nXB6L0q8GWcS37VrF7p3744lS5ZgzJiGIWw333wzPvjgAyxbtsz2HNdeey3effddrFmzBoFA/ZC8F198EdnZ2ejTpw82btyI3//+98jNzcXSpUvhdicOgbvjjjtw5513Jmx/4YUXkJ2d3Yg7bHn2BvfiyZ1PJn3csLxhKM0qxWtlr6V87dM6noZ5++elfLwTt/a5VRsy+sqeV7CuZl2jzjemYAy21m3FruAubZtX8WJ67+m4f8v9KZ3z+l7XI9eTi6+rvsab5W/qXju146nIdefiv2X/TTjuyOwjsaFmAwBgcO5grDy8Ujtm9eHVWo0lvhJc2ePKpGq6Z9M92td/6PsHAMB7+9/DZxX18x929HbENT2vSeqcj25/FAfDB3XnTCe15lH5ozC5eHLaz09ERERERESkqqmpwc9+9jNUVFQgPz/fdL9mHzraGLNmzcKLL76IxYsXayEbAPz0pz/Vvh40aBAGDx6MI444AosXL8aECRMSzjNjxgxMnz5d+76yslKb+83q4bUm4XAY8+fPx+DjBqPkk5Kkjx9x1AgMKB6AT5Z8knINJ40+CV8u+9LRvvF4HOXl5ejUqVNSc62dccYZ2terlqzCwR3mc8k5Mfjowcg+mI1IWcNCEQFPAGeecSb+8co/Uqr3zNPPRJY3C7lbcxPC5OOGH4dO2Z3w8ccfJxx31qCz8M9V/wQADCwdiD1b6ufPGzVsFOq21SGyv77G/sX9MeWUKZY1qJ+HSZMmwev14omXn9BemzKl/tiyr8uwZd0WAECv/F6Ycpr1OY0WvLcAmw5t0p0zVcZ6AWg1DzpyEKYMa9z5001Wb0vGejOL9WYW680s1ptZrDezWG9mtbZ6gdZXM+vNLNabWa2tXifU0Y92mjVoKy4uhtvtxt69e3Xb9+7dazu/2uzZszFr1iwsWLAAgwcPtty3b9++KC4uxnfffScN2vx+P/z+xHmxvF5vm/lAqKKIwuVKfn6rLF8WsnxZKR2rKsgqcHy8OizwqI5HYeOhjY6vIb5fHrenUfUCgMvtQq4/V3cej9sDv8+v26YNsVQU22vmZuXCpbgQ8AUS9vV5fMj2Z0vPMfXYqcjx52Bol6F47dvXtH0CvgC8Hq/2fUGgwPHnVv2Mi9dTj/V5fNp2ryf5nwXxuaXr50j8mVTP7Xa7W+zPaWv7M4T1ZhbrzSzWm1msN7NYb2ax3sxqbfUCra9m1ptZrDezWlu9VpzeR7POKO7z+TBixAgsXLhQ2xaLxbBw4ULdUFKjBx54AHfffTfmzZuHkSNH2l5nx44d2L9/P7p27ZqWuluzYFS+Iqgdn9unW8FS3ZYMJ4shiBPwn9jhREzsMzGpa6RbPB5Htlc/fFhd8fO8/ufh5NKT0SHQIalzqhP5J7sYgsflwZlHn4meBT11iwH43D7TVUcbQ1xgIZXFELK8WWmpw04zjn4nIiIiIiIi0mn2pfumT5+OJ598Es899xzWrl2La665BtXV1doqpBdffLFusYT7778ft912G5555hmUlpZiz5492LNnDw4frp+s/vDhw7jpppvw6aefYsuWLVi4cCHOPvts9OvXD5Mncx6nxgRtxrDFLBAy4yQAEsMZBUpSw0aNYvGGCf6HdRmW0jnikARt39d06bBLMX3M9JRXIJUd53a5EwJNABhcou/aNAZtYuiZrtVdxdBT/Nop43PLlDgYtBEREREREVHL0OxztJ1//vkoLy/HzJkzsWfPHgwdOhTz5s1D586dAQDbtm3TDWt77LHHEAqFMHXqVN15br/9dtxxxx1wu91YuXIlnnvuORw6dAjdunXDqaeeirvvvls6PLS9qYvUpXSc1+WF16UPgAKeAKpCVY7PIQZAPrcPoWgoYZ9sTzYOh+pDU0VRtO6xVERjUe3rm8behL99/jd8vD1x7jPRreNuhUtx4e4P726oyaSjTeVKMa8262gTQ7OS7BLMOW1OQngm1uBz+3RddS2mo83DjjYiIiIiIiJqX5o9aAOAadOmYdq0adLXFi9erPt+y5YtlufKysrCu+++m6bK2p5gJLWONr/Hn9BpFfAETPaWE4OXPF8e9tful15HJeto65rbFWN6jMF/v01cldMoGm8I2nJ9uTix14m2QdvQLkMT7ssYtIndZIA+kLLTu6C39rVZ0CYGmm6XG3n+vIT9xGv63D4UBgq173N9uY7rsSLeZzL3qJrcbzLmbZyHozsenZZ6iIiIiIiIiFq6FhG0UdOpi6bW0eZz+6QdbcmeQ5XtzZYGbcYhisZusVxfLn58zI+dBW1CR5uiOBuGauxWk87RZjiP02GV/zz3n7oQzDRoEwJNY6gnq9PY0ZauoE28r1Q62voV9cM/zv5H0nPYEREREREREbVWDNrakapIVcodbemYo0083mz+LnEfs2GjThdhEOdoA5wFYsZgK454whDIhKGjJmGYkTFwcjJ01IwY9vncPhRmNXS0pW2ONlfj5mgDgOLs4rTUYoVztBEREREREVFLwaCtnfho20d4ZNsjKKkr0c1555Rs1VFxmKcTYjhkFk4Zhygau8cUKPC5fZh+/HQ8/OnDltczBm1OOtpkddl2tFkMqzyv/3nYXrkd5/Y/N+E1WdAWj8d1nYPGe5DV6Xf7MzJHm9ixmOqCD02Bc7QRERERERFRS9Fyf3umtPrH1/9o1PGyoaNOO7lkzMIRMdDp4O2Q0D2mhlwn9znZNmgT52gDzDvkRAkdbfE4euT3sNxH1u11+bDLMbTLUPQq6GUa8EmDNsR1gWYkFrGt0+v26uZoS1dHmxi0pTJHGxEREREREVF7k3pSQq1KOBrWfZ/sUEDZ0NHGBG1mnVpuxY07f3Anfjzwxzgm5xhHXWhmxDnaAGf1qtfr26EvAOAHpT9A9/zuuHnszQ37OBg6qigKenfobVm/aVef8N4Yw0JZDcY52pId0mtGF7SlOHSUiIiIiIiIqD1h0NZOGDujzOZIMyMbOuokfDEbcmgWtHlcHgzvOhwXHnshFEVJmB8tGcaQKplgcPaps/H0WU/j6OL6FTPH9R6nvWYM2ozPBTC/P6v61OPEcM4YFqrEecl8bp9uAYR0zYvWWjraOEcbERERERERtRQM2tqJxgZtfrc/ITSzm7frL6f/BWN7jJW+FovHMKXflITtxnOO7DYSJ/Y8UfveyfBP8RoiMcCyO4/X7UVJTon0NWNgJ1u8wEnQ1j2vOwYUD8CYHmO0bcYhtWZDR8XtPrcPiqLguXOew9NnPY0sb+rhpEgMOTlHGxEREREREZE9Bm3tRCSuD2ySnTDf6/bCpbh0IdOwrsNwZNGRpsf43D7TbqNYPIarR16NC469QLddNjz1lhNv0b5PZiip1dDRxsxjJq7wCciHajoJ2hRFwQOTHsDvx/3edB+zoaPiUGB17ryirCLTcNApsTOutQwdZUcbERERERERtRQM2toJY9dPKh1tAHQLIgQ8ATw82XxBAo/Lg6FdhgJI7CCLIw5FURIWWEjnEEWroaOprMx55w/uxOCSwZg+Zrpue6odbTLG0Mhs6Gg41hC0NWYeO9WsCbNwdMejcc/J92jbWsuqo0REREREREQtBX97bqdSmaMNqA9cgtEgACSEZEaxeAwT+05ElicL/Yv7J7wGJIZh6Qx0EoaOCmFfKnO/De86HMO7Dk/Y7vfoO9pcigsT+05M+vxAakNH0+GYkmMw+9TZum1i0JaOMC/dFCiII66FuURERERERETNjR1t7VSyQyfVCf/Fif+NoVi+Px9//+Hfddtcigvjeo9Dp5xOuu1qCHZc9+N0282GKJ5z9DkAgF8M/YXjmq2GjsoWMEiV2NF2+bDL8cqPX0FRVlFK5zJ2tJkNi0x30CYjBm3GVWtbgn+c/Q/cNv42jOs1zn5nIiIiIiIioibAoK0dkIUyyXR0uRSXFqqJXWzGsCrgDqBbXjecffTZmNBnAjrndE441/he4wEAPx74YwBA38K+mD2poZPKrHPql8N/iVd//CoGdhoofd3n9uFnx/5Mty0GfUebGLTJ5lVLlRi0eV1e6VBSp5xO7N8UQZsYpIpDVVuKjtkdcVz341pktx0RERERERG1Txw62g5Uh6oTtokdVz63D6FoyPR4MTgSwxdjR1uX3C4AgMuHX256rhvG3oALB1+IbnndtG29CnpZVN/AOERT9PLUlxPmdzN2tImBjNW5kiWGdo0d+moWJBo1RdAmPq+muB4RERERERFRa8egrR04HDqcsE2co83r8joO2nQdbd9/PXP8TLz27Wv4zfG/sa3Fpbh0IRuQngUQZOcwzv8mztHWmK4zIzG0s5u3zswL572AQ3WH0D2/u6P9m3ooZ0scOkpERERERETU0jBoawfCsTBKckpQhjJtmxhMiUMqZcRQSpzbTe3eGtV9FEZ1H5VyfZla0dLY0Sbec7+ifli6Y2larqMLIlOc+y3Pn4c8f57j/Zu6w6wlDh0lIiIiIiIiamk4R1s7UNqhFE+c8YT2vc/t04VrdkFbwN0wKX5hoFD7Ol0LCthdP1VWq452ze2KR057RPd6gb8gpeuYdfxlUlMHX+xoIyIiIiIiIrLHoK0dyvJk6Vb3tAu6xC62wqyGoC1TnWjpYpz7TZxzzOf2oW9hX+37An8Bnj7r6ZSuI87Rlo5hsE6kc+irE5yjjYiIiIiIiMgeg7Z2KOAJ6AIhu1UbxRVKxY62lh603XzCzZjQZwL+fNqfAUAXLhprLwwUprxAQnN0tP1q1K/QM78nbhhzQ5Ncr2te1ya5DhEREREREVFr1rKTEsqIZDvaxIUTOgQ6aF83VaiUqpKcElx//PXa92KgaBz26nQRApl0zNGWrO753fG3M/6W8es8MPEBLNy8EJcMuSTj1yIiIiIiIiJq7Ri0tUPd8rrpF0OAC16X13TeryxvQ0ebOGF/S+9oMxLnaFNDwgcnPYh5383DpUMvTfm86Vh1tKUa0GkABnQa0NxlEBEREREREbUKrSspoUb5SeefoKJzBa4aeRW+3fettt2luOB1mwdtYkdbnq8haGuq7q10ETv31C60/sX90b+4f6POK87Rlq7w0a24EY1H7XckIiIiIiIiohaDc7S1I0flHIXbx9+Ooqwi3dBRRVEsO7HEOdo6ZnfUvm5tHW1i0JbOkDATQ0dP63caAGBo56FpOR8RERERERERZV7rSkoobXRDR7/vaDMjDh3tltcNPzv2Z8jyZtnO7dbS6OZoS+MQz0wshnDZsMswrMswDOo8KC3nIyIiIiIiIqLMY9DWThkXQ3Da0QYAFwy6IGN1ifOopVuTdLSlKWjzuX0Y3WN0Ws5FRERERERERE2jdbUkUdoYO9qshoGKc7S1JNeMvAYAcP3o65M+Np0dbcZnSURERERERETtEzva2ikxEFKgn6Pt9pPq53H7zbzfANAPHW1Jphw5Baf0OQUBT8DR/rF4TPs6nR1tub5c7WuntRARERERERFR28P2m3YqYeioEDyN7DYSfQv7at93z+ue8XpO6n0SAODs/mcndVwywVY01rCKZ7rnaHv09EdxTY9rWt1KrERERERERESUPuxoa6cSFkOQBE/3nnIvKuoq0LOgZ8bruWHMDZh23LSMdoRlcsXU7nnd0dHX0X5HIiIiIiIiImqzGLS1U8aOthN7nYjV5atRnF2sbR/ceXCT1aMoSsaHXfrcPvz7R/+GW3HrViAlIiIiIiIiIkoHBm3tlNjRlu3NxulHno5OOZ1wdMejm7GqzBPnUyMiIiIiIiIiSicGbe2U2NGW68uFS3HhuO7HNWNFREREREREREStGxdDaKfEVUfz/fnNWAkRERERERERUdvAoK2dEoeO5vnzmrESIiIiIiIiIqK2gUFbOyUOHc3zMWgjIiIiIiIiImosBm3tlNjRxqGjRERERERERESNx6CtndJ1tHHoKBERERERERFRozFoa6fExRByvDnNWAkRERERERERUdvAoK2dEoeOZnuzm7ESIiIiIiIiIqK2gUFbO+VxebSvOXSUiIiIiIiIiKjxPPa7UFvkc/tw4aALEY1FUZRV1NzlEBERERERERG1egza2rGfHvvT5i6BiIiIiIiIiKjN4NBRIiIiIiIiIiKiNGDQRkRERERERERElAYM2oiIiIiIiIiIiNKAQRsREREREREREVEaMGgjIiIiIiIiIiJKgxYRtD366KMoLS1FIBDA6NGj8dlnn5nu++STT2LcuHEoLCxEYWEhJk6caLn/1VdfDUVRMGfOnAxUTkREREREREREVK/Zg7aXXnoJ06dPx+23344vv/wSQ4YMweTJk1FWVibdf/HixbjggguwaNEiLF26FD179sSpp56KnTt3Juz72muv4dNPP0W3bt0yfRtERERERERERNTONXvQ9vDDD+OKK67ApZdeioEDB+Lxxx9HdnY2nnnmGen+zz//PK699loMHToU/fv3x1NPPYVYLIaFCxfq9tu5cyd+/etf4/nnn4fX622KWyEiIiIiIiIionbM05wXD4VCWL58OWbMmKFtc7lcmDhxIpYuXeroHDU1NQiHwygqKtK2xWIxXHTRRbjppptwzDHH2J4jGAwiGAxq31dWVgIAwuEwwuGw09tp0dT7aC33w3ozi/VmFuvNLNabWaw3s1hvZrHezGK9mcV6M6+11cx6M4v1ZlZrq9cJp/eixOPxeIZrMbVr1y50794dS5YswZgxY7TtN998Mz744AMsW7bM9hzXXnst3n33XaxZswaBQAAAcN9992HRokV49913oSgKSktLcf311+P666+XnuOOO+7AnXfembD9hRdeQHZ2dmo3R0REREREREREbUJNTQ1+9rOfoaKiAvn5+ab7NWtHW2PNmjULL774IhYvXqyFbMuXL8cjjzyCL7/8EoqiODrPjBkzMH36dO37yspKbe43q4fXmoTDYcyfPx+TJk1qFUNpWW9msd7MYr2ZxXozi/VmFuvNLNabWaw3s1hv5rW2mllvZrHezGpt9Tqhjn6006xBW3FxMdxuN/bu3avbvnfvXnTp0sXy2NmzZ2PWrFlYsGABBg8erG3/6KOPUFZWhl69emnbotEobrjhBsyZMwdbtmxJOJff74ff70/Y7vV628wHQtXa7on1ZhbrzSzWm1msN7NYb2ax3sxivZnFejOL9WZea6uZ9WYW682s1lavFaf30ayLIfh8PowYMUK3kIG6sIE4lNTogQcewN1334158+Zh5MiRutcuuugirFy5EitWrND+161bN9x000149913M3YvRERERERERETUvjX70NHp06fjkksuwciRI3Hcccdhzpw5qK6uxqWXXgoAuPjii9G9e3fcd999AID7778fM2fOxAsvvIDS0lLs2bMHAJCbm4vc3Fx07NgRHTt21F3D6/WiS5cuOProo5v25oiIiIiIiIiIqN1o9qDt/PPPR3l5OWbOnIk9e/Zg6NChmDdvHjp37gwA2LZtG1yuhsa7xx57DKFQCFOnTtWd5/bbb8cdd9zRlKUTERERERERERFpmj1oA4Bp06Zh2rRp0tcWL16s+142x5qdVI4hIiIiIiIiIiJKRrPO0UZERERERERERNRWMGgjIiIiIiIiIiJKgxYxdLSlicfjAIDKyspmriR9wuEwampqUFlZ2SqW1mW9mcV6M4v1ZhbrzSzWm1msN7NYb2ax3sxivZnX2mpmvZnFejOrtdXrhJoRqZmRGQZtElVVVQCAnj17NnMlRERERERERETUUlRVVaGgoMD0dSVuF8W1Q7FYDLt27UJeXh4URWnuctKisrISPXv2xPbt25Gfn9/c5dhivZnFejOL9WYW680s1ptZrDezWG9msd7MYr2Z19pqZr2ZxXozq7XV60Q8HkdVVRW6desGl8t8JjZ2tEm4XC706NGjucvIiPz8/Fb1IWe9mcV6M4v1ZhbrzSzWm1msN7NYb2ax3sxivZnX2mpmvZnFejOrtdVrx6qTTcXFEIiIiIiIiIiIiNKAQRsREREREREREVEaMGhrJ/x+P26//Xb4/f7mLsUR1ptZrDezWG9msd7MYr2ZxXozi/VmFuvNLNabea2tZtabWaw3s1pbvenExRCIiIiIiIiIiIjSgB1tREREREREREREacCgjYiIiIiIiIiIKA0YtBEREREREREREaUBgzYiIiIiIiIiIqI0YNDWDjz66KMoLS1FIBDA6NH/3969R0VdJn4c/4zA4MhN5T7SIIpCmqBieWu9EsJ68LpqRgRe2jJU0GLVyktaCkWamWGaomaalyNltop4gdQVERCVQjQyTEFZVLyAJs08vz88zE9kYNBl5xndz+ucOUe+DMwb5Mwz32ee7/fbHZmZmbKT6vTjjz8iNDQUarUaCoUC3377reykei1atAjPPvss7Ozs4OLigmHDhqGgoEB2Vp0SExPh5+cHe3t72Nvbo2fPnti1a5fsrAaJi4uDQqFATEyM7JQ6zZs3DwqFosbN19dXdla9Ll68iJdffhmOjo5QqVTo1KkTsrKyZGcZ1Lp161q/X4VCgaioKNlpBmm1WsyePRteXl5QqVRo27YtFixYAHO+BtHNmzcRExMDT09PqFQq9OrVC8eOHZOdBcD4+CCEwJw5c+Du7g6VSoXAwECcPXtWTiyM927fvh1BQUFwdHSEQqFAbm6ulM5q9fVWVVVhxowZ6NSpE2xsbKBWq/HKK6+guLjYLHuBe8/Hvr6+sLGxQYsWLRAYGIijR4/KicXDvb55/fXXoVAo8Mknn5is70HGeiMjI2s9FwcHB8uJRcN+v/n5+RgyZAgcHBxgY2ODZ599FufPnzd9LIz3GhrrFAoFPvroI7PsvXXrFiZPngwPDw+oVCp06NABK1askNIKGO+9fPkyIiMjoVar0axZMwQHB0sdLxqyP3Hnzh1ERUXB0dERtra2GDlyJC5fvmy2vStXrkS/fv1gb28PhUKB8vJyKa2A8d6rV69iypQp8PHxgUqlgkajwdSpU3H9+nWz7AWA1157DW3btoVKpYKzszOGDh2K06dPm21vNSEEQkJCHov9/P8UJ9qecJs3b8b06dMxd+5c5OTkwN/fH4MGDUJpaansNIMqKirg7++P5cuXy05pkPT0dERFRSEjIwOpqamoqqpCUFAQKioqZKcZ5OHhgbi4OGRnZyMrKwsDBgzA0KFD8dNPP8lOq9exY8fwxRdfwM/PT3aKUR07dkRJSYn+dujQIdlJdbp27Rp69+4NKysr7Nq1Cz///DM+/vhjtGjRQnaaQceOHavxu01NTQUAjBo1SnKZYfHx8UhMTMRnn32G/Px8xMfH48MPP8SyZctkp9Vp4sSJSE1NxVdffYVTp04hKCgIgYGBuHjxouw0o+PDhx9+iE8//RQrVqzA0aNHYWNjg0GDBuHOnTsmLr3HWG9FRQWef/55xMfHm7jMsPp6KysrkZOTg9mzZyMnJwfbt29HQUEBhgwZIqH0HmO/3/bt2+Ozzz7DqVOncOjQIbRu3RpBQUH497//beLSexr6+iY5ORkZGRlQq9UmKjOsIb3BwcE1npM3bdpkwsKajPUWFhbi+eefh6+vL9LS0nDy5EnMnj0bTZs2NXHpPcZ67/+9lpSUYM2aNVAoFBg5cqSJS+8x1jt9+nTs3r0bGzZsQH5+PmJiYjB58mTs2LHDxKX31NcrhMCwYcPw66+/4rvvvsPx48fh6emJwMBAaa/fG7I/MW3aNHz//ffYunUr0tPTUVxcjBEjRphtb2VlJYKDg/H2229Labyfsd7i4mIUFxcjISEBeXl5WLt2LXbv3o0JEyaYZS8ABAQEICkpCfn5+UhJSYEQAkFBQdBqtWbZW+2TTz6BQqEweaMUgp5ozz33nIiKitJ/rNVqhVqtFosWLZJY1TAARHJysuyMh1JaWioAiPT0dNkpDdaiRQvx5Zdfys6o082bN0W7du1Eamqq6Nu3r4iOjpadVKe5c+cKf39/2RkNNmPGDPH888/Lznhk0dHRom3btkKn08lOMWjw4MFi/PjxNbaNGDFChIWFSSqqX2VlpbCwsBA7d+6ssb1r167inXfekVRl2IPjg06nE25ubuKjjz7SbysvLxfW1tZi06ZNEgprqm88O3funAAgjh8/btKm+jRk/M3MzBQARFFRkWmi6tGQ3uvXrwsAYu/evaaJqkddvRcuXBCtWrUSeXl5wtPTUyxZssTkbYYY6o2IiBBDhw6V0mOMod4xY8aIl19+WU6QEQ35+x06dKgYMGCAaYKMMNTbsWNHMX/+/BrbzGXseLC3oKBAABB5eXn6bVqtVjg7O4tVq1ZJKKztwf2J8vJyYWVlJbZu3aq/T35+vgAgjhw5IitTr779nwMHDggA4tq1a6YPq0ND9te2bNkilEqlqKqqMmGZYQ3pPXHihAAgfvnlFxOWGVZX7/Hjx0WrVq1ESUnJY7mf/7C4ou0JdvfuXWRnZyMwMFC/rUmTJggMDMSRI0cklj25qpcYt2zZUnKJcVqtFt988w0qKirQs2dP2Tl1ioqKwuDBg2v8HZuzs2fPQq1Wo02bNggLC5N2WEpD7NixA926dcOoUaPg4uKCLl26YNWqVbKzGuTu3bvYsGEDxo8fb7bvjPXq1Qv79u3DmTNnAAAnTpzAoUOHEBISIrnMsD///BNarbbWCg+VSmXWKzMB4Ny5c7h06VKN5wkHBwd0796d491/yfXr16FQKNC8eXPZKUbdvXsXK1euhIODA/z9/WXnGKTT6RAeHo7Y2Fh07NhRdk6DpKWlwcXFBT4+Ppg0aRKuXLkiO8kgnU6HH374Ae3bt8egQYPg4uKC7t27PzaHLV2+fBk//PCDtNU1DdGrVy/s2LEDFy9ehBACBw4cwJkzZxAUFCQ7rZY//vgDAGqMdU2aNIG1tbXZjHUP7k9kZ2ejqqqqxhjn6+sLjUZjFmPc47T/AzSs9/r167C3t4elpaWpsuptAeruraioQFJSEry8vPDUU0+ZMs0gQ72VlZV46aWXsHz5cri5uclKMylOtD3BysrKoNVq4erqWmO7q6srLl26JKnqyaXT6RATE4PevXvjmWeekZ1Tp1OnTsHW1hbW1tZ4/fXXkZycjA4dOsjOMuibb75BTk4OFi1aJDulQbp3765fbp6YmIhz587hL3/5C27evCk7zaBff/0ViYmJaNeuHVJSUjBp0iRMnToV69atk51m1Lfffovy8nJERkbKTqnTzJkz8eKLL8LX1xdWVlbo0qULYmJiEBYWJjvNIDs7O/Ts2RMLFixAcXExtFotNmzYgCNHjqCkpER2Xr2qxzSOd6Zx584dzJgxA2PHjoW9vb3snDrt3LkTtra2aNq0KZYsWYLU1FQ4OTnJzjIoPj4elpaWmDp1quyUBgkODsb69euxb98+xMfHIz09HSEhIVIOWzKmtLQUt27dQlxcHIKDg7Fnzx4MHz4cI0aMQHp6uuw8o9atWwc7Oztphwk2xLJly9ChQwd4eHhAqVQiODgYy5cvR58+fWSn1VI9QTVr1ixcu3YNd+/eRXx8PC5cuGAWY52h/YlLly5BqVTWemPDHMa4x2X/p1pDesvKyrBgwQL8/e9/N3FdbfX1fv7557C1tYWtrS127dqF1NRUKJVKSaX31NU7bdo09OrVC0OHDpVYZ1ryp2iJnhBRUVHIy8szm3fD6uLj44Pc3Fxcv34d27ZtQ0REBNLT081usu33339HdHQ0UlNTpZ1D5WHdv1LJz88P3bt3h6enJ7Zs2WKW70TrdDp069YNCxcuBAB06dIFeXl5WLFiBSIiIiTX1W/16tUICQmRfh6j+mzZsgVff/01Nm7ciI4dOyI3NxcxMTFQq9Vm+/v96quvMH78eLRq1QoWFhbo2rUrxo4di+zsbNlpZCaqqqowevRoCCGQmJgoO6de/fv3R25uLsrKyrBq1SqMHj0aR48ehYuLi+y0GrKzs7F06VLk5OSY7QrdB7344ov6f3fq1Al+fn5o27Yt0tLSMHDgQIlltel0OgDA0KFDMW3aNABA586d8a9//QsrVqxA3759ZeYZtWbNGoSFhZn1a6Fly5YhIyMDO3bsgKenJ3788UdERUVBrVab3REJVlZW2L59OyZMmICWLVvCwsICgYGBCAkJMYuLFT0u+xPVnrTeGzduYPDgwejQoQPmzZtn2jgD6usNCwvDCy+8gJKSEiQkJGD06NE4fPiw1OcKQ707duzA/v37cfz4cWldMnBF2xPMyckJFhYWta5Ic/ny5f+ZJZumMnnyZOzcuRMHDhyAh4eH7Jx6KZVKeHt7IyAgAIsWLYK/vz+WLl0qO6uW7OxslJaWomvXrrC0tISlpSXS09Px6aefwtLS0izfNX9Q8+bN0b59e/zyyy+yUwxyd3evNcH69NNPm/XhrgBQVFSEvXv3YuLEibJT6hUbG6tf1dapUyeEh4dj2rRpZr1Cs23btkhPT8etW7fw+++/IzMzE1VVVWjTpo3stHpVj2kc7/67qifZioqKkJqaatar2QDAxsYG3t7e6NGjB1avXg1LS0usXr1adlYtBw8eRGlpKTQajX68KyoqwptvvonWrVvLzmuQNm3awMnJySzHOycnJ1haWj6W493BgwdRUFBg1uPd7du38fbbb2Px4sUIDQ2Fn58fJk+ejDFjxiAhIUF2nkEBAQHIzc1FeXk5SkpKsHv3bly5ckX6WFfX/oSbmxvu3r1b68qdsse4x2n/BzDee/PmTQQHB8POzg7JycmwsrKSUPn/jPU6ODigXbt26NOnD7Zt24bTp08jOTlZQuk9dfXu378fhYWFaN68uX6MA4CRI0eiX79+kmr/+zjR9gRTKpUICAjAvn379Nt0Oh327dtn1ufkepwIITB58mQkJydj//798PLykp300HQ6nf58FeZk4MCBOHXqFHJzc/W3bt26ISwsDLm5ubCwsJCdaNStW7dQWFgId3d32SkG9e7du9blt8+cOQNPT09JRQ2TlJQEFxcXDB48WHZKvSorK9GkSc1h1sLCQr+6wpzZ2NjA3d0d165dQ0pKitkv9ffy8oKbm1uN8e7GjRs4evQox7tGUj3JdvbsWezduxeOjo6ykx6auY534eHhOHnyZI3xTq1WIzY2FikpKbLzGuTChQu4cuWKWY53SqUSzz777GM53q1evRoBAQFme25B4N5zQ1VV1WM53jk4OMDZ2Rlnz55FVlaWtLHO2P5EQEAArKysaoxxBQUFOH/+vJQx7nHb/2lI740bNxAUFASlUokdO3ZIXRX2KL9fIQSEEFLGOGO9M2fOrDXGAcCSJUuQlJRk8l5T4aGjT7jp06cjIiIC3bp1w3PPPYdPPvkEFRUVGDdunOw0g27dulXj3dBz584hNzcXLVu2hEajkVhmWFRUFDZu3IjvvvsOdnZ2+vMkODg4QKVSSa6rbdasWQgJCYFGo8HNmzexceNGpKWlmeULeTs7u1rnIrCxsYGjo6PZngPirbfeQmhoKDw9PVFcXIy5c+fCwsICY8eOlZ1mUPX5EhYuXIjRo0cjMzMTK1euxMqVK2Wn1Umn0yEpKQkRERFmcYLa+oSGhuKDDz6ARqNBx44dcfz4cSxevBjjx4+XnVan6kvE+/j44JdffkFsbCx8fX3NYswwNj7ExMTg/fffR7t27eDl5YXZs2dDrVZj2LBhZtl79epVnD9/HsXFxQCgnwRwc3OTskKhvl53d3f87W9/Q05ODnbu3AmtVqsf71q2bCnlnDD19To6OuKDDz7AkCFD4O7ujrKyMixfvhwXL17EqFGjTN5qrFej0dSauLSysoKbmxt8fHxMnQqg/t6WLVvivffew8iRI+Hm5obCwkL84x//gLe3NwYNGmR2vRqNBrGxsRgzZgz69OmD/v37Y/fu3fj++++RlpZmlr3AvR3/rVu34uOPP5bSeD9jvX379kVsbCxUKhU8PT2Rnp6O9evXY/HixWbZu3XrVjg7O0Oj0eDUqVOIjo7GsGHDpF28wdj+hIODAyZMmIDp06ejZcuWsLe3x5QpU9CzZ0/06NHD7HqBe+eVu3Tpkv7/4dSpU7Czs4NGozH5RROM9VZPslVWVmLDhg24ceMGbty4AQBwdnY2+Zv7xnp//fVXbN68GUFBQXB2dsaFCxcQFxcHlUqFv/71ryZtbUhvXa9rNBqN2U/S/kfkXOyUTGnZsmVCo9EIpVIpnnvuOZGRkSE7qU7Vl4B+8BYRESE7zSBDrQBEUlKS7DSDxo8fLzw9PYVSqRTOzs5i4MCBYs+ePbKzGqxv374iOjpadkadxowZI9zd3YVSqRStWrUSY8aMMYvLbNfn+++/F88884ywtrYWvr6+YuXKlbKT6pWSkiIAiIKCAtkpRt24cUNER0cLjUYjmjZtKtq0aSPeeecd8ccff8hOq9PmzZtFmzZthFKpFG5ubiIqKkqUl5fLzhJCGB8fdDqdmD17tnB1dRXW1tZi4MCBUv9OjPUmJSUZ/PzcuXPNrvfcuXN1jncHDhwwu97bt2+L4cOHC7VaLZRKpXB3dxdDhgwRmZmZUlqN9Rri6ekplixZYtLG+9XXW1lZKYKCgoSzs7OwsrISnp6e4tVXXxWXLl0yy95qq1evFt7e3qJp06bC399ffPvtt2bd+8UXXwiVSmUWz8HGektKSkRkZKRQq9WiadOmwsfHR3z88cdCp9OZZe/SpUuFh4eHsLKyEhqNRrz77rtSx+aG7E/cvn1bvPHGG6JFixaiWbNmYvjw4aKkpMRse+fOnWs2+0jGeuv6ewEgzp07Z3a9Fy9eFCEhIcLFxUVYWVkJDw8P8dJLL4nTp0+bvLUhvXV9TXJysskaZVAIYQZnfSQiIiIiIiIiInrM8RxtREREREREREREjYATbURERERERERERI2AE21ERERERERERESNgBNtREREREREREREjYATbURERERERERERI2AE21ERERERERERESNgBNtREREREREREREjYATbURERERERERERI2AE21EREREZiQyMhLDhg2T9vjh4eFYuHChtMd/WLt370bnzp2h0+lkpxARERFxoo2IiIjIVBQKRb23efPmYenSpVi7dq2UvhMnTuCf//wnpk6dqt/Wr18/xMTE1Lrv2rVr0bx5c9PF1SE4OBhWVlb4+uuvZacQERERwVJ2ABEREdH/ipKSEv2/N2/ejDlz5qCgoEC/zdbWFra2tjLSAADLli3DqFGjpDbcTwgBrVYLS8v6X7JGRkbi008/RXh4uInKiIiIiAzjijYiIiIiE3Fzc9PfHBwcoFAoamyztbWtdehov379MGXKFMTExKBFixZwdXXFqlWrUFFRgXHjxsHOzg7e3t7YtWtXjcfKy8tDSEgIbG1t4erqivDwcJSVldXZptVqsW3bNoSGhj7yz5eYmIi2bdtCqVTCx8cHX331lf5zv/32GxQKBXJzc/XbysvLoVAokJaWBgBIS0uDQqHArl27EBAQAGtraxw6dAgnTpxA//79YWdnB3t7ewQEBCArK0v/fUJDQ5GVlYXCwsJHbiciIiJqDJxoIyIiIjJz69atg5OTEzIzMzFlyhRMmjQJo0aNQq9evZCTk4OgoCCEh4ejsrISwL0JrAEDBqBLly7IysrC7t27cfnyZYwePbrOxzh58iSuX7+Obt26PVJjcnIyoqOj8eabbyIvLw+vvfYaxo0bhwMHDjz095o5cybi4uKQn58PPz8/hIWFwcPDA8eOHUN2djZmzpwJKysr/f01Gg1cXV1x8ODBR2onIiIiaiw8dJSIiIjIzPn7++Pdd98FAMyaNQtxcXFwcnLCq6++CgCYM2cOEhMTcfLkSfTo0QOfffYZunTpUuOiBmvWrMFTTz2FM2fOoH379rUeo6ioCBYWFnBxcan1uc8//xxffvlljW1//vknmjZtqv84ISEBkZGReOONNwAA06dPR0ZGBhISEtC/f/+H+nnnz5+PF154Qf/x+fPnERsbC19fXwBAu3btan2NWq1GUVHRQz0OERERUWPjijYiIiIiM+fn56f/t4WFBRwdHdGpUyf9NldXVwBAaWkpgHsXNThw4ID+nG+2trb6Saq6Dq+8ffs2rK2toVAoan0uLCwMubm5NW7z58+vcZ/8/Hz07t27xrbevXsjPz//oX/eB1fVTZ8+HRMnTkRgYCDi4uIM/gwqlUq/oo+IiIhIFq5oIyIiIjJz9x8mCdy7eun926onx3Q6HQDg1q1bCA0NRXx8fK3v5e7ubvAxnJycUFlZibt370KpVNb4nIODA7y9vWtsM7TyrT5Nmtx7f1cIod9WVVVl8L42NjY1Pp43bx5eeukl/PDDD9i1axfmzp2Lb775BsOHD9ff5+rVq3B2dn6oJiIiIqLGxhVtRERERE+Yrl274qeffkLr1q3h7e1d4/bgJFa1zp07AwB+/vnnR3rMp59+GocPH66x7fDhw+jQoQMA6CfB7r/y6v0XRjCmffv2mDZtGvbs2YMRI0YgKSlJ/7k7d+6gsLAQXbp0eaR2IiIiosbCiTYiIiKiJ0xUVBSuXr2KsWPH4tixYygsLERKSgrGjRsHrVZr8GucnZ3RtWtXHDp06JEeMzY2FmvXrkViYiLOnj2LxYsXY/v27XjrrbcA3Du0s0ePHvqLHKSnp+vPO1ef27dvY/LkyUhLS0NRUREOHz6MY8eO4emnn9bfJyMjA9bW1ujZs+cjtRMRERE1Fk60ERERET1h1Go1Dh8+DK1Wi6CgIHTq1AkxMTFo3ry5/hBOQyZOnIivv/76kR5z2LBhWLp0KRISEtCxY0d88cUXSEpKQr9+/fT3WbNmDf78808EBAQgJiYG77//vtHva2FhgStXruCVV15B+/btMXr0aISEhOC9997T32fTpk0ICwtDs2bNHqmdiIiIqLEoxP0nyiAiIiKi/1m3b9+Gj48PNm/e/NisDisrK4OPjw+ysrLg5eUlO4eIiIj+x3FFGxEREREBuHd45/r161FWViY7pcF+++03fP7555xkIyIiIrPAFW1ERERERERERESNgCvaiIiIiIiIiIiIGgEn2oiIiIiIiIiIiBoBJ9qIiIiIiIiIiIgaASfaiIiIiIiIiIiIGgEn2oiIiIiIiIiIiBoBJ9qIiIiIiIiIiIgaASfaiIiIiIiIiIiIGgEn2oiIiIiIiIiIiBoBJ9qIiIiIiIiIiIgawf8Bvdh1wTD7YYsAAAAASUVORK5CYII="},"metadata":{}}]},{"cell_type":"code","source":"pip install torch numpy matplotlib pycryptodome\n","metadata":{"execution":{"iopub.status.busy":"2024-09-16T20:38:23.170600Z","iopub.execute_input":"2024-09-16T20:38:23.171010Z","iopub.status.idle":"2024-09-16T20:38:39.790884Z","shell.execute_reply.started":"2024-09-16T20:38:23.170973Z","shell.execute_reply":"2024-09-16T20:38:39.789509Z"},"trusted":true},"execution_count":3,"outputs":[{"name":"stdout","text":"Requirement already satisfied: torch in /opt/conda/lib/python3.10/site-packages (2.4.0+cpu)\nRequirement already satisfied: numpy in /opt/conda/lib/python3.10/site-packages (1.26.4)\nRequirement already satisfied: matplotlib in /opt/conda/lib/python3.10/site-packages (3.7.5)\nRequirement already satisfied: pycryptodome in /opt/conda/lib/python3.10/site-packages (3.20.0)\nRequirement already satisfied: filelock in /opt/conda/lib/python3.10/site-packages (from torch) (3.15.1)\nRequirement already satisfied: typing-extensions>=4.8.0 in /opt/conda/lib/python3.10/site-packages (from torch) (4.12.2)\nRequirement already satisfied: sympy in /opt/conda/lib/python3.10/site-packages (from torch) (1.12)\nRequirement already satisfied: networkx in /opt/conda/lib/python3.10/site-packages (from torch) (3.3)\nRequirement already satisfied: jinja2 in /opt/conda/lib/python3.10/site-packages (from torch) (3.1.4)\nRequirement already satisfied: fsspec in /opt/conda/lib/python3.10/site-packages (from torch) (2024.6.1)\nRequirement already satisfied: contourpy>=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (1.2.1)\nRequirement already satisfied: cycler>=0.10 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (0.12.1)\nRequirement already satisfied: fonttools>=4.22.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (4.53.0)\nRequirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (1.4.5)\nRequirement already satisfied: packaging>=20.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (21.3)\nRequirement already satisfied: pillow>=6.2.0 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (9.5.0)\nRequirement already satisfied: pyparsing>=2.3.1 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (3.1.2)\nRequirement already satisfied: python-dateutil>=2.7 in /opt/conda/lib/python3.10/site-packages (from matplotlib) (2.9.0.post0)\nRequirement already satisfied: six>=1.5 in /opt/conda/lib/python3.10/site-packages (from python-dateutil>=2.7->matplotlib) (1.16.0)\nRequirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.10/site-packages (from jinja2->torch) (2.1.5)\nRequirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.10/site-packages (from sympy->torch) (1.3.0)\nNote: you may need to restart the kernel to use updated packages.\n","output_type":"stream"}]},{"cell_type":"code","source":"import torch\nimport torch.nn as nn\nimport numpy as np\nimport matplotlib.pyplot as plt\nfrom Crypto.Cipher import AES\nfrom Crypto.Util.Padding import pad, unpad\nimport hashlib\n\n# Parameters\nnum_nodes = 10000\nhours = 24\nsamples_per_hour = 60 # Sampling points per hour (e.g., one sample per minute)\ntime_steps = hours * samples_per_hour\nwave_frequency = 1 / 24 # Frequency to represent a 24-hour cycle\nwave_amplitude = 1.0\ninfrared_amplitude = 0.5 # Constant amplitude for even distribution\nbrainwave_frequency = 10 / 3600 # Simulating a 10 Hz brainwave over hours (scaled)\nbrainwave_amplitude = 0.3\nrandom_opportunity_scale = 0.8 # Scaling factor for random wealth opportunities\nencryption_key = b'Sixteen byte key' # AES encryption key (must be 16, 24, or 32 bytes)\n\n# Define the PyTorch model\nclass WealthSignalModel(nn.Module):\n def __init__(self):\n super(WealthSignalModel, self).__init__()\n self.num_nodes = num_nodes\n self.time_steps = time_steps\n\n def forward(self, time_tensor):\n # Initialize the combined signals tensor\n combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32)\n\n for i in range(self.num_nodes):\n # Wealth signal with a phase shift for each node\n wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes))\n # Random wealth opportunities\n random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps)\n # Constant infrared energy signal\n infrared_signal = infrared_amplitude * torch.ones(self.time_steps)\n # Perfect brainwave pattern (alpha waves)\n brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor)\n # Combine signals for each node\n combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal\n\n # Combine all signals (simulating dense waveform)\n overall_signal = torch.mean(combined_signals, dim=0)\n\n return overall_signal\n\n# AES encryption and decryption functions\ndef encrypt_data(data, key):\n cipher = AES.new(key, AES.MODE_CBC)\n ct_bytes = cipher.encrypt(pad(data, AES.block_size))\n return cipher.iv + ct_bytes\n\ndef decrypt_data(encrypted_data, key):\n iv = encrypted_data[:AES.block_size]\n ct = encrypted_data[AES.block_size:]\n cipher = AES.new(key, AES.MODE_CBC, iv)\n pt = unpad(cipher.decrypt(ct), AES.block_size)\n return pt\n\n# Create a time tensor\ntime_tensor = torch.linspace(0, hours, time_steps)\n\n# Initialize and run the model\nsignal_model = WealthSignalModel()\ntransmitted_signal = signal_model(time_tensor)\n\n# Convert the transmitted signal to numpy for encryption\ntransmitted_signal_np = transmitted_signal.detach().numpy()\ntransmitted_signal_np_bytes = (transmitted_signal_np * 255).astype(np.uint8) # Scale to byte range\n\n# Encrypt the signal\nencrypted_signal = encrypt_data(transmitted_signal_np_bytes, encryption_key)\n\n# Decrypt the signal\ndecrypted_signal_bytes = decrypt_data(encrypted_signal, encryption_key)\ndecrypted_signal_np = decrypted_signal_bytes.astype(np.float32) / 255 # Scale back to original range\n\n# Convert back to tensor\ndecrypted_signal_tensor = torch.from_numpy(decrypted_signal_np).float()\n\n# Plot the resulting signal\nplt.figure(figsize=(15, 6))\nplt.imshow(decrypted_signal_np.reshape((samples_per_hour, hours)), aspect='auto', cmap='viridis')\nplt.title('Wealth Signal Visualization with AES Encryption')\nplt.xlabel('Time (Hours)')\nplt.ylabel('Amplitude')\nplt.colorbar(label='Amplitude')\nplt.grid(True)\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2024-09-16T20:38:48.614549Z","iopub.execute_input":"2024-09-16T20:38:48.614975Z","iopub.status.idle":"2024-09-16T20:38:49.916036Z","shell.execute_reply.started":"2024-09-16T20:38:48.614935Z","shell.execute_reply":"2024-09-16T20:38:49.914498Z"},"trusted":true},"execution_count":5,"outputs":[{"traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mUFuncTypeError\u001b[0m Traceback (most recent call last)","Cell \u001b[0;32mIn[5], line 75\u001b[0m\n\u001b[1;32m 72\u001b[0m transmitted_signal_np_bytes \u001b[38;5;241m=\u001b[39m (transmitted_signal_np \u001b[38;5;241m*\u001b[39m \u001b[38;5;241m255\u001b[39m)\u001b[38;5;241m.\u001b[39mastype(np\u001b[38;5;241m.\u001b[39muint8) \u001b[38;5;66;03m# Scale to byte range\u001b[39;00m\n\u001b[1;32m 74\u001b[0m \u001b[38;5;66;03m# Encrypt the signal\u001b[39;00m\n\u001b[0;32m---> 75\u001b[0m encrypted_signal \u001b[38;5;241m=\u001b[39m \u001b[43mencrypt_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtransmitted_signal_np_bytes\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mencryption_key\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 77\u001b[0m \u001b[38;5;66;03m# Decrypt the signal\u001b[39;00m\n\u001b[1;32m 78\u001b[0m decrypted_signal_bytes \u001b[38;5;241m=\u001b[39m decrypt_data(encrypted_signal, encryption_key)\n","Cell \u001b[0;32mIn[5], line 53\u001b[0m, in \u001b[0;36mencrypt_data\u001b[0;34m(data, key)\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mencrypt_data\u001b[39m(data, key):\n\u001b[1;32m 52\u001b[0m cipher \u001b[38;5;241m=\u001b[39m AES\u001b[38;5;241m.\u001b[39mnew(key, AES\u001b[38;5;241m.\u001b[39mMODE_CBC)\n\u001b[0;32m---> 53\u001b[0m ct_bytes \u001b[38;5;241m=\u001b[39m cipher\u001b[38;5;241m.\u001b[39mencrypt(\u001b[43mpad\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mAES\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mblock_size\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 54\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m cipher\u001b[38;5;241m.\u001b[39miv \u001b[38;5;241m+\u001b[39m ct_bytes\n","File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/Crypto/Util/Padding.py:64\u001b[0m, in \u001b[0;36mpad\u001b[0;34m(data_to_pad, block_size, style)\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 63\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnknown padding style\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m---> 64\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mdata_to_pad\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mpadding\u001b[49m\n","\u001b[0;31mUFuncTypeError\u001b[0m: ufunc 'add' did not contain a loop with signature matching types (dtype('uint8'), dtype('S16')) -> None"],"ename":"UFuncTypeError","evalue":"ufunc 'add' did not contain a loop with signature matching types (dtype('uint8'), dtype('S16')) -> None","output_type":"error"}]},{"cell_type":"code","source":"import torch\nimport torch.nn as nn\nimport numpy as np\nimport matplotlib.pyplot as plt\n\n# Parameters\nnum_nodes = 10000\nhours = 24\nsamples_per_hour = 60 # Sampling points per hour (e.g., one sample per minute)\ntime_steps = hours * samples_per_hour\nwave_frequency = 1 / 24 # Frequency to represent a 24-hour cycle\nwave_amplitude = 1.0\ninfrared_amplitude = 0.5 # Constant amplitude for even distribution\nbrainwave_frequency = 10 / 3600 # Simulating a 10 Hz brainwave over hours (scaled)\nbrainwave_amplitude = 0.3\nrandom_opportunity_scale = 0.8 # Scaling factor for random wealth opportunities\nencryption_key = 0.5 # Encryption key for simulating protection\n\n# Define the PyTorch model with VPN-like frequency\nclass WealthSignalVPNModel(nn.Module):\n def __init__(self):\n super(WealthSignalVPNModel, self).__init__()\n self.num_nodes = num_nodes\n self.time_steps = time_steps\n self.encryption_key = encryption_key\n\n def forward(self, time_tensor):\n # Initialize the combined signals tensor\n combined_signals = torch.zeros((self.num_nodes, self.time_steps), dtype=torch.float32)\n\n for i in range(self.num_nodes):\n # Wealth signal with a phase shift for each node\n wealth_signal = wave_amplitude * torch.sin(2 * np.pi * wave_frequency * time_tensor + i * (2 * np.pi / self.num_nodes))\n # Random wealth opportunities\n random_wealth_opportunities = random_opportunity_scale * torch.randn(self.time_steps)\n # Constant infrared energy signal\n infrared_signal = infrared_amplitude * torch.ones(self.time_steps)\n # Perfect brainwave pattern (alpha waves)\n brainwave_signal = brainwave_amplitude * torch.sin(2 * np.pi * brainwave_frequency * time_tensor)\n # Combine signals for each node\n combined_signals[i] = wealth_signal + random_wealth_opportunities + infrared_signal + brainwave_signal\n\n # Combine all signals (simulating dense waveform)\n overall_signal = torch.mean(combined_signals, dim=0)\n\n # Apply VPN-like encryption (scramble signal)\n encrypted_signal = torch.sin(overall_signal * self.encryption_key) # A simple scrambling function\n\n return encrypted_signal, overall_signal # Return both encrypted and original signals for validation\n\n# Create a time tensor\ntime_tensor = torch.linspace(0, hours, time_steps)\n\n# Initialize and run the model\nvpn_model = WealthSignalVPNModel()\nencrypted_signal, original_signal = vpn_model(time_tensor)\n\n# Convert the signals to numpy for plotting\nencrypted_signal_np = encrypted_signal.detach().numpy()\noriginal_signal_np = original_signal.detach().numpy()\n\n# Reshape the signals for 2D visualization (e.g., hours x samples_per_hour)\nencrypted_signal_reshaped = encrypted_signal_np.reshape((samples_per_hour, hours))\noriginal_signal_reshaped = original_signal_np.reshape((samples_per_hour, hours))\n\n# Plot the resulting color maps\nfig, axs = plt.subplots(2, 1, figsize=(15, 12))\n\n# Original Signal Plot\ncax1 = axs[0].imshow(original_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')\naxs[0].set_title('Original Signal Visualization')\naxs[0].set_xlabel('Time (Hours)')\naxs[0].set_ylabel('Sample Points Per Hour')\nfig.colorbar(cax1, ax=axs[0], orientation='vertical', label='Amplitude')\n\n# Encrypted Signal Plot\ncax2 = axs[1].imshow(encrypted_signal_reshaped, aspect='auto', cmap='viridis', interpolation='none')\naxs[1].set_title('Encrypted Signal Visualization')\naxs[1].set_xlabel('Time (Hours)')\naxs[1].set_ylabel('Sample Points Per Hour')\nfig.colorbar(cax2, ax=axs[1], orientation='vertical', label='Amplitude')\n\nplt.tight_layout()\nplt.show()","metadata":{"execution":{"iopub.status.busy":"2024-09-16T20:42:52.714302Z","iopub.execute_input":"2024-09-16T20:42:52.714730Z","iopub.status.idle":"2024-09-16T20:42:54.948242Z","shell.execute_reply.started":"2024-09-16T20:42:52.714690Z","shell.execute_reply":"2024-09-16T20:42:54.947137Z"},"trusted":true},"execution_count":6,"outputs":[{"output_type":"display_data","data":{"text/plain":"
","image/png":"iVBORw0KGgoAAAANSUhEUgAABVIAAASlCAYAAABKoyJrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxU1f3/8ffMZDJZSMKahH1VFhXQUCCIOxW3qgVba1UQFZcf4BJrlX6/imILLhVoFcUqaK0batVqtViLiFpR2/B1qSgCsgkkrEnInszc3x/I1EhiMvdmODnk9fRxHw/nzp0z73u5uXPnzOee63McxxEAAAAAAAAAoEF+0wEAAAAAAAAAoKWjIxUAAAAAAAAAGkFHKgAAAAAAAAA0go5UAAAAAAAAAGgEHakAAAAAAAAA0Ag6UgEAAAAAAACgEXSkAgAAAAAAAEAj6EgFAAAAAAAAgEbQkQoAAAAAAAAAjaAjFQAAeHbbbbfJ5/O5eu1jjz0mn8+nDRs2NG+ob9mwYYN8Pp8ee+yxZmvzxBNP1Iknnths7Xnl8/l02223NVt78dhmzZXDy/7mhan3BQAAQMtARyoAAK3YZ599posuukhdu3ZVKBRSly5ddOGFF+qzzz4zHc2YDRs2aNKkSerbt6+SkpKUnZ2t448/XjNmzDAdzZM5c+bI5/PpH//4R4PLPPzww/L5fHr55ZcPYrKWpby8XLfddpveeust01EAAADQwvgcx3FMhwAAAAffCy+8oAsuuEDt27fXZZddpt69e2vDhg1auHChdu3apWeeeUY//vGPm9RWbW2tamtrlZSUFHOOcDismpoahUKhuFX7bdiwQb1799ajjz6qSy65pMHl1q5dqx/84AdKTk7WpZdeql69emnbtm1auXKl/va3v6mysjK6bHV1tSQpMTExLplj5fP5NGPGjAarUrdu3aru3btr4sSJWrRoUb3LnHTSSfr000+1bds2JSQkqKqqSsFgUIFAII7Jv199/3Ze9rfG7Ny5U506dap3W8bzfQEAANDyJZgOAAAADr5169bp4osvVp8+ffT222+rU6dO0eeuvfZaHXfccbr44ov1ySefqE+fPg22U1ZWptTUVCUkJCghwd1pRSAQMNpR921z585VaWmpPvroI/Xs2bPOc9u3b6/zuKV0oDZVly5ddNJJJ+mFF17Qgw8+qFAoVOf5LVu26O2339YVV1yhYDAoSS22w9DL/mbj+wIAAKBl4NJ+AABaoXvuuUfl5eX6wx/+UKcTVZI6duyohx56SGVlZbr77ruj8/ePD7lq1Sr9/Oc/V7t27TR69Og6z31bRUWFrrnmGnXs2FFpaWk6++yztWXLlgPG8qxvjNRevXrprLPO0rvvvqvhw4crKSlJffr00eOPP17nPXbv3q1f/OIXOuqoo9SmTRulp6fr9NNP18cff+xqu6xbt07dunU7oBNVkjIzM+s8rm+M1I0bN+rss89WamqqMjMzdf311+v111+Xz+erc6n4iSeeqCOPPFKrVq3SSSedpJSUFHXt2rXO9pb2Vb3eeuutysnJUUZGhlJTU3Xcccdp2bJlrtbvoosuUnFxsV599dUDnnvmmWcUiUR04YUXSqp/bNKCggJNmjRJ3bp1UygUUufOnXXOOefU+bdraKzWXr161akG9vJv99397ZJLLpHP56t32p+lKdtyw4YN0b+H22+//YA26tvPa2trdccdd6hv374KhULq1auXfvWrX6mqquqA9W/KPg0AAICWi5/UAQBohV555RX16tVLxx13XL3PH3/88erVq1e9HW4/+clPdNhhh2nWrFn6vhGCLrnkEj377LO6+OKLNXLkSC1fvlxnnnlmkzOuXbtW5513ni677LLo5eiXXHKJcnJydMQRR0iSvvrqK7300kv6yU9+ot69e6uwsFAPPfSQTjjhBK1atUpdunRp8vtJUs+ePfWPf/xDb775pk4++eSYXltWVqaTTz5Z27Zt07XXXqvs7Gw99dRTDXZ67tmzR6eddprGjRunn/70p3r++ed100036aijjtLpp58uSSopKdEjjzyiCy64QJMnT9bevXu1cOFCjR07Vh9++KGGDh0aU8Zx48bp6quv1lNPPaVx48bVee6pp55Sz549deyxxzb4+vHjx+uzzz7TtGnT1KtXL23fvl1vvPGGNm3apF69esWUpTn/7a688kqNGTOmzrwlS5boySefjHaAN2VbdurUSQ8++KCuvvpq/fjHP45uo8GDBzf43pdffrn++Mc/6rzzztMNN9ygDz74QLNnz9bnn3+uF198sc6yTdmnAQAA0II5AACgVSkqKnIkOeecc873Lnf22Wc7kpySkhLHcRxnxowZjiTnggsuOGDZ/c/tl5+f70hyrrvuujrLXXLJJY4kZ8aMGdF5jz76qCPJWb9+fXRez549HUnO22+/HZ23fft2JxQKOTfccEN0XmVlpRMOh+u8x/r1651QKOTMnDmzzjxJzqOPPvq96/yf//zHSU5OdiQ5Q4cOda699lrnpZdecsrKyg5Y9oQTTnBOOOGE6ON7773XkeS89NJL0XkVFRXOgAEDHEnOsmXL6rxWkvP4449H51VVVTnZ2dnO+PHjo/Nqa2udqqqqOu+7Z88eJysry7n00kvrzP/udm3IT37yEycpKckpLi6Ozvviiy8cSc706dOj8767zfbs2eNIcu65557vbb+hHD179nQmTpwYfezl3+67+9t3rVmzxsnIyHB++MMfOrW1tY7jNH1b7tixo8F1+O77fvTRR44k5/LLL6+z3C9+8QtHkvPmm2/WWf+m7NMAAABoubi0HwCAVmbv3r2SpLS0tO9dbv/zJSUldeZfddVVjb7HkiVLJEn/7//9vzrzp02b1uScgwYNqlMx26lTJ/Xv319fffVVdF4oFJLfv+90JhwOa9euXWrTpo369++vlStXNvm99jviiCP00Ucf6aKLLtKGDRv0u9/9Tueee66ysrL08MMPf+9rlyxZoq5du+rss8+OzktKStLkyZPrXb5Nmza66KKLoo8TExM1fPjwOusXCASiY7FGIhHt3r1btbW1GjZsmKv1k/Zd3l9ZWakXXnghOu+pp56SpOhl/fVJTk5WYmKi3nrrLe3Zs8fVe39bc//b7VdWVqYf//jHateunZ5++uno+Lvx2JavvfaaJCkvL6/O/BtuuEGSDqjobso+DQAAgJaLjlQAAFqZ/R2k+ztUG9JQh2vv3r0bfY+NGzfK7/cfsGy/fv2anLNHjx4HzGvXrl2dTrxIJKK5c+fqsMMOUygUUseOHdWpUyd98sknKi4ubvJ7fdvhhx+uP/3pT9q5c6c++eQTzZo1SwkJCbriiiv0j3/8o8HXbdy4UX379j1gDM2G1rlbt24HLPvd9ZOkP/7xjxo8eLCSkpLUoUMHderUSa+++qrr9Tv99NPVvn37aOepJD399NMaMmTI915eHgqFdNddd+lvf/ubsrKydPzxx+vuu+9WQUGBqxzx+LeTpMmTJ2vdunV68cUX1aFDhzrPNfe23L+ff/ffODs7W23bttXGjRvrzG/KPg0AAICWi45UAABamYyMDHXu3FmffPLJ9y73ySefqGvXrkpPT68zPzk5OZ7xovZXEn6X861xWWfNmqW8vDwdf/zxeuKJJ/T666/rjTfe0BFHHKFIJOL5/Y866ihNnz49Otblk08+6anN77Zfn2+v3xNPPKFLLrlEffv21cKFC7VkyRK98cYbOvnkk12vXzAY1E9/+lO9+eabKiws1L/+9S+tWbPme6tR97vuuuv05Zdfavbs2UpKStItt9yigQMH6v/+7/8afW04HK7zOB7/dr/73e/09NNP6+GHHz5g/Nh4bMv9vtsh3pCm/JsDAACg5eJmUwAAtEJnnXWWHn74Yb377rsaPXr0Ac+/88472rBhg6688kpX7ffs2VORSETr16/XYYcdFp2/du1a15nr8/zzz+ukk07SwoUL68wvKipSx44dm+19hg0bJknatm1bg8v07NlTq1atkuM4dTrWvKzz888/rz59+uiFF16o0+aMGTNctyntu4R/wYIFWrx4sdavXy+fz6cLLrigSa/t27evbrjhBt1www1as2aNhg4dqnvvvVdPPPGEpH0VlkVFRXVeU11dfcC2a+5/u3feeUe/+MUvdN1119XbKdzUbdnUTlHpv/v5mjVrNHDgwOj8wsJCFRUVqWfPnjGvBwAAAFouKlIBAGiFbrzxRiUnJ+vKK6/Url276jy3e/duXXXVVUpJSdGNN97oqv2xY8dKkh544IE68++77z53gRsQCAQOqOZ77rnntGXLFlftvfPOO6qpqTlg/v6xMPv379/ga8eOHastW7bo5Zdfjs6rrKxsdGzV77O/gvHb6/jBBx9oxYoVrtuUpGOPPVa9evXSE088ocWLF+uEE05Qt27dvvc15eXlqqysrDOvb9++SktLU1VVVZ15b7/9dp3l/vCHPxxQkdqc/3bbtm3TT3/6U40ePVr33HNPvcs0dVumpKRI0gGdwfU544wzJEnz5s2rM3/OnDmSpDPPPLNJ+QEAAGAHKlIBAGiFDjvsMP3xj3/UhRdeqKOOOkqXXXaZevfurQ0bNmjhwoXauXOnnn76afXt29dV+zk5ORo/frzmzZunXbt2aeTIkVq+fLm+/PJLSbFV/X2fs846SzNnztSkSZM0atQoffrpp3ryySfVp08fV+3dddddys/P17hx4zR48GBJ0sqVK/X444+rffv2uu666xp87ZVXXqn7779fF1xwga699lp17txZTz75pJKSkiS5W+ezzjpLL7zwgn784x/rzDPP1Pr167VgwQINGjRIpaWlrtZxf5af//znmjVrliRp5syZjb7myy+/1CmnnKKf/vSnGjRokBISEvTiiy+qsLBQP/vZz6LLXX755brqqqs0fvx4/fCHP9THH3+s119//YAq0+b8t7vmmmu0Y8cO/fKXv9QzzzxT57nBgwdr8ODBTd6WycnJGjRokBYvXqzDDz9c7du315FHHqkjjzzygPcdMmSIJk6cqD/84Q8qKirSCSecoA8//FB//OMfde655+qkk06KeV0AAADQctGRCgBAK/WTn/xEAwYM0OzZs6Odpx06dNBJJ52kX/3qV/V2HMXi8ccfV3Z2tp5++mm9+OKLGjNmjBYvXqz+/ftHOxe9+tWvfqWysjI99dRTWrx4sY455hi9+uqruvnmm12399RTT2n58uV68sknVV5ers6dO+tnP/uZbrnllu+90VabNm305ptvatq0afrd736nNm3aaMKECRo1apTGjx/vap0vueQSFRQU6KGHHtLrr7+uQYMG6YknntBzzz2nt956y9U67nfhhRdq1qxZCoVCOu+88xpdvnv37rrgggu0dOlS/elPf1JCQoIGDBigZ599VuPHj48uN3nyZK1fvz46Dulxxx2nN954Q6ecckqd9prz327Hjh0Kh8PKy8s74LkZM2Zo8ODBMW3LRx55RNOmTdP111+v6upqzZgxo8G/h0ceeUR9+vTRY489phdffFHZ2dmaPn265+EXAAAA0PL4HEa3BwAAB8lHH32ko48+Wk888USTbm50KJg3b56uv/56ff311+ratavpOAAAAABcYoxUAAAQFxUVFQfMmzdvnvx+v44//ngDieLvu+tcWVmphx56SIcddhidqAAAAIDluLQfAADExd133638/HyddNJJSkhI0N/+9jf97W9/0xVXXKHu3bubjhcX48aNU48ePTR06FAVFxfriSee0BdffKEnn3zSdDQAAAAAHnFpPwAAiIs33nhDt99+u1atWqXS0lL16NFDF198sf7nf/5HCQmH5m+58+bN0yOPPKINGzYoHA5r0KBB+uUvf6nzzz/fdDQAAAAAHtGRCgAAAAAAAACNYIxUAAAAAAAAAGjEoXld3bdEIhFt3bpVaWlp8vl8puMAAAAAAACgAY7jaO/everSpYv8fur/6lNZWanq6uq4vkdiYqKSkpLi+h42OuQ7Urdu3XrI3tACAAAAAADgULR582Z169bNdIwWp7KyUr17tlHB9nBc3yc7O1vr16+nM/U7rOhInT9/vu655x4VFBRoyJAhuu+++zR8+PAmvTYtLU2SdGKniUrwJ8YzZlw4bdNMR/DG4l+PajPsPliUdQ6ZjuBaxudFpiN44iTYu9/795abjuBJJKON6Qiu1aYGTUdwLXHTTtMRPHFC9p0fRAUCphN4s6fEdALXfCF7/2YlSbXx/fIVT+HdRaYjeBIe1t90BNeCX24xHcGbtummE7hW28Hec5yEtXbvN05VlekIrlUcO8B0BFdqayv1rzdnR/tzUFd1dbUKtoe1Mb+X0tPi892zZG9EPXM2qLq6mo7U72jxHamLFy9WXl6eFixYoBEjRmjevHkaO3asVq9erczMzEZfv/9y/gR/op0dqQF7O8MkWd2RqgS7DxYJQXv3nQTL93snYO9+7/fb+8VakiI27zsJ9n1G7Zfgt3i7S3IC9m576ztSLTw3289ncXZJkr/WdALXfD67O7F9Fp9j2vh9qg6rzxPYb0xxfPbenzshaO9+I4nhGRvRJs2nNmnx2UYRse0b0uK/7c+ZM0eTJ0/WpEmTNGjQIC1YsEApKSlatGiR6WgAAAAAAAAAWokWXZFaXV2t/Px8TZ8+PTrP7/drzJgxWrFiRb2vqaqqUtW3Su9LSuy9ZAwAAAAAAAD4rrATUThOBdNhJxKfhg8BLboidefOnQqHw8rKyqozPysrSwUFBfW+Zvbs2crIyIhO3GgKAAAAAAAAgFctuiPVjenTp6u4uDg6bd682XQkAAAAAAAAoNlE5MR1Qv1a9KX9HTt2VCAQUGFhYZ35hYWFys7Orvc1oVBIoZDFg4gDAAAAAAAAaHFadEVqYmKicnJytHTp0ui8SCSipUuXKjc312AyAAAAAAAAwIxInP9D/Vp0Raok5eXlaeLEiRo2bJiGDx+uefPmqaysTJMmTYqpndrC7ZIvGKeU8ePr1sl0BE/8RWWmI7jme+9L0xE8adu1i+kIrkXappmO4M06e4cUCQ/sbTqCJ4Fde01HcC1YUW06gmtOib3bXZJ8gQzTEVxzAgHTETypGdTNdATX/BW1piN4EiiuMB3BNV9RsekIniSUVJqO4Fq4j73nl5KUsN3efSdhp8Wfte3bmk7gSdkRHU1HcC20087zS19tjekIQINafEfq+eefrx07dujWW29VQUGBhg4dqiVLlhxwAyoAAAAAAACgNQg7jsJOfMYyjVe7h4IW35EqSVOnTtXUqVNNxwAAAAAAAADQSlnRkQoAAAAAAABgn4gcRRSfytF4tXsoaNE3mwIAAAAAAACAloCKVAAAAAAAAMAiETkKU5F60FGRCgAAAAAAAACNoCIVAAAAAAAAsAhjpJrRajpSAwMPUyAQMh0jdsXlphN4UtO1rekIriWkDjAdwZPq9CTTEVwLVNSYjuBJILOj6QiuRaprTUfwpLx/pukIriWv32M6gmvhAT1NR2i1qjrZe6yXpKTCCtMRXPPVRkxH8CSckWw6gmuB7l1MR/CkaFBb0xFca/fWetMRPIl0bGc6gmu+iL3HnEhKoukInqRsLDMdwbWqrBTTEVyprQmbjgA0qNV0pAIAAAAAAACHgrDjKOzEp3I0Xu0eChgjFQAAAAAAAAAaQUUqAAAAAAAAYJHIN1O82kb9qEgFAAAAAAAAgEZQkQoAAAAAAABYJCxHYcVpjNQ4tXsooCIVAAAAAAAAABpBRSoAAAAAAABgkbCzb4pX26gfFakAAAAAAAAA0IhWU5EabpMoX0LIdIyY+T/aaDqCJwkp9m3z/SqzU01H8MRn8S9IgdJq0xE8qenc1nQE1xKKKkxH8CSpoMx0BPcC9v62afPxRpL85fYec5Krak1H8MRXEzYdwTUnwd6/WUkK7K0xHcE1Z0uB6QiepKcnm47gXpK95/aS5Avbe8yp6JFhOoJrwRJ7jzeS5PPbe/9yx2c6gTu25j7YIt9M8Wob9bP7DBAAAAAAAAAADoJWU5EKAAAAAAAAHAoi8ims+JTvRuLU7qGAilQAAAAAAAAAaAQVqQAAAAAAAIBFIs6+KV5to35UpAIAAAAAAABAI6hIBQAAAAAAACwSjuMYqfFq91BARSoAAAAAAAAANKLVVKRGQgFFEgKmY8QsIauT6QieOGWVpiO4llgcNB3Bk8qOSaYjuOavqjEdwZNwqr37TnnPDNMRPAmW1pqO4JovbO9+k1Bs77Fekqqy2piO4FrSuu2mI3hS06W96QiuJZTYvd+Hv1hrOoJreyaONB3Bk1BxxHQE11J9dlcohZPs/fqbvKHIdATXnKC9212SIin2nqMl7agwHcGV2rDdn7EHCxWpZlCRCgAAAAAAAACNsPunIQAAAAAAAKCViTg+RZz4VI7Gq91DARWpAAAAAAAAANAIKlIBAAAAAAAAizBGqhlUpAIAAAAAAABAI6hIBQAAAAAAACwSll/hONVHhuPS6qGBilQAAAAAAAAAaAQVqQAAAAAAAIBFHMeniBOfsUydOLV7KGg1HanBwlIlBGpMx4iZ0ybFdARPwqmJpiO45i+vNh3Bk9QVX5uO4FrtgB6mI3hS0jvZdATX2q4pMx3Bk0goYDqCa753PjYdwbXa3CGmI3jiWHx9TiQt1XQETwIWf9Y6Abu/YPgHDzAdwbX2H5eYjuBJON3e8+PKTvae40iSzfdOqW3TznQE16rT7T0/k6S0dXtNR3DPb+lJjs/iP1Yc8lpNRyoAAAAAAABwKAjLp3CcfiGKV7uHAkt/ngAAAAAAAACAg4eKVAAAAAAAAMAiYcevcJzGqAo7cWn2kEBFKgAAAAAAAAA0gopUAAAAAAAAwCIR+RSJU31kRJSkNoSKVAAAAAAAAABoBBWpAAAAAAAAgEXC8iksX9zaRv1aTUdqJD1JkUCS6RgxCyfZ/U/kr6o1HcE1n8XZJan28O6mI7gXsfsygo7/3GY6gnuRiOkEnpQemW06gmu+M35gOoJryZv2mo7gSXlX+84P9gtUJZuO0GoFC4pNR/Ak3KGN6Qiu1bQJmo7gSeKuStMRXKvskGg6giepm8pMR3CttGeq6QiuBcvCpiN4UnJYmukIriVU2nluX1tDJx5aLi7tBwAAAAAAACwSdvxxndyYP3++evXqpaSkJI0YMUIffvjh9y5fVFSkKVOmqHPnzgqFQjr88MP12muvRZ+fPXu2fvCDHygtLU2ZmZk699xztXr1alfZmgsdqQAAAAAAAABcW7x4sfLy8jRjxgytXLlSQ4YM0dixY7V9+/Z6l6+urtYPf/hDbdiwQc8//7xWr16thx9+WF27do0us3z5ck2ZMkXvv/++3njjDdXU1OjUU09VWZm5Kwzsvm4cAAAAAAAAaGUi8ikSp7FM3bQ7Z84cTZ48WZMmTZIkLViwQK+++qoWLVqkm2+++YDlFy1apN27d+u9995TMLhv2J5evXrVWWbJkiV1Hj/22GPKzMxUfn6+jj/++JgzNgcqUgEAAAAAAADUUVJSUmeqqqqqd7nq6mrl5+drzJgx0Xl+v19jxozRihUr6n3Nyy+/rNzcXE2ZMkVZWVk68sgjNWvWLIXDDY+rXFy8b4z69u3be1grb+hIBQAAAAAAACwSkV/hOE2Rb7oLu3fvroyMjOg0e/bserPs3LlT4XBYWVlZdeZnZWWpoKCg3td89dVXev755xUOh/Xaa6/plltu0b333qtf//rX9a9vJKLrrrtOxx57rI488kgPW84bLu0HAAAAAAAAUMfmzZuVnp4efRwKhZqt7UgkoszMTP3hD39QIBBQTk6OtmzZonvuuUczZsw4YPkpU6boP//5j959991my+AGHakAAAAAAACARcKOX2EnPheahx1HkpSenl6nI7UhHTt2VCAQUGFhYZ35hYWFys7Orvc1nTt3VjAYVCAQiM4bOHCgCgoKVF1drcTExOj8qVOn6q9//avefvttdevWzc0qNRsu7QcAAAAAAADgSmJionJycrR06dLovEgkoqVLlyo3N7fe1xx77LFau3atIpFIdN6XX36pzp07RztRHcfR1KlT9eKLL+rNN99U796947siTdBqKlIjAb8iCfb1G/sijukInkQSA40v1EJVHmZu8OLmkLS9wnQE18q7pZiO4Im/utZ0BNeqOiabjuCJv9beY2Zwb43pCK6VDMwwHcGTjE92mY7gWiSl+S6vMiIQnzvNHgxVPdqZjuBJZXt7vwaEihu+CYUNKrvYe54TTrT3b1ay+7tJTYp932X3S9pl7zmOJCnS+CItlb/G0vC1dh/nD5bIt8Yybf62Y/9elZeXp4kTJ2rYsGEaPny45s2bp7KyMk2aNEmSNGHCBHXt2jU6zurVV1+t+++/X9dee62mTZumNWvWaNasWbrmmmuibU6ZMkVPPfWU/vKXvygtLS063mpGRoaSk818d7X3DAoAAAAAAACAceeff7527NihW2+9VQUFBRo6dKiWLFkSvQHVpk2b5Pf/t+O3e/fuev3113X99ddr8ODB6tq1q6699lrddNNN0WUefPBBSdKJJ55Y570effRRXXLJJXFfp/rQkQoAAAAAAABYJOz4FHbic6WA23anTp2qqVOn1vvcW2+9dcC83Nxcvf/++w225zgt74pDe68PAAAAAAAAAICDhIpUAAAAAAAAwCJh+RWOU31k2MUYqa0FFakAAAAAAAAA0AgqUgEAAAAAAACLRBy/Ik586iMjLXBs0paCilQAAAAAAAAAaESrqUh1EvxyEuzrN3YC8bkD28Gyt3vIdATXknfWmo7gyd7eqaYjuJZaUGU6gicVXezd9sG9du/3kQR7j5nbj0kxHcG11IKw6Qie7MztZDqCa/4au6sFknfZu+8kby4xHcGT6vS2piO4FqcbFB80jt/eFbB92wfKqk1HcC2hMsl0BNdq2tjd7VCVYV8/wn5Je0wncCfis3ebH0yMkWoGeycAAAAAAAAANMLun4YAAAAAAACAViYiKRynSwUicWn10EBFKgAAAAAAAAA0gopUAAAAAAAAwCIR+RWJU31kvNo9FLBlAAAAAAAAAKARVKQCAAAAAAAAFgk7foWd+NRHxqvdQwFbBgAAAAAAAAAaQUUqAAAAAAAAYJGIfIrIF7e2Ub9W05Fa1iWkhGDIdIyY+Wsd0xE8SSyLmI7gWqDK3uySlLI9bDqCa5XtE01H8CQcsvdDp82nO01H8KSiXyfTEVzr9H/lpiO45q+1+3hZ1d6+84P9EirsPdZLUm1ywHQE18p7pZuO4InN55gJlXbv9061vcfMqnS7z9Fq2iWbjuCav9Z0AvdCu6pMR/AkZXO16Qiulfa187MqHODiabRcraYjFQAAAAAAADgUMEaqGWwZAAAAAAAAAGgEFakAAAAAAACARcLyKxyn+sh4tXsoYMsAAAAAAAAAQCOoSAUAAAAAAAAsEnF8ijjxudFxvNo9FFCRCgAAAAAAAACNoCIVAAAAAAAAsEgkjmOkRqi7bFCr6UgNFdUqIaHWdIyYRYJ277z+Wsd0BNeKeyeajuBJsMLebd/2kyLTETypyk41HcG13aO6mI7gSUpBjekIroWTAqYjuBaJ2JtdkmqT7f2stTm7JJV3sjd/m4Kw6QieJBVWmY7gWmVWyHQETyra23vMTNlh937v+O29VLU2yd7s1W3t/l7lSw+ajuBabcjO/SZs8d8qDn1Gz17ffvtt/ehHP1KXLl3k8/n00ksv1XnecRzdeuut6ty5s5KTkzVmzBitWbPGTFgAAAAAAACgBYg4/rhOqJ/RLVNWVqYhQ4Zo/vz59T5/99136/e//70WLFigDz74QKmpqRo7dqwqKysPclIAAAAAAAAArZnRS/tPP/10nX766fU+5ziO5s2bp//93//VOeecI0l6/PHHlZWVpZdeekk/+9nPDmZUAAAAAAAAoEUIy6ew4jMMQrzaPRS02Frd9evXq6CgQGPGjInOy8jI0IgRI7RixYoGX1dVVaWSkpI6EwAAAAAAAAB40WI7UgsKCiRJWVlZdeZnZWVFn6vP7NmzlZGREZ26d+8e15wAAAAAAADAwcQYqWYccltm+vTpKi4ujk6bN282HQkAAAAAAACA5YyOkfp9srOzJUmFhYXq3LlzdH5hYaGGDh3a4OtCoZBCoVC84wEAAAAAAABGhBW/sUzDcWn10NBiK1J79+6t7OxsLV26NDqvpKREH3zwgXJzcw0mAwAAAAAAANDaGK1ILS0t1dq1a6OP169fr48++kjt27dXjx49dN111+nXv/61DjvsMPXu3Vu33HKLunTponPPPTfm94oE/YoEW2y/cYMqOgRMR/AkfWOV6QiuRYIttmC7SWr89t5lr6xfuukInoQT7TvW7Je0q9Z0BE/KOgdNR3AtZYe9235vN3u3uySlbao2HcG13YPsvgonbbO9+73tdg1OMR3BtaTdEdMRPEnca2/+SNDe80vJ7vOEYLljOoJrtan2nhtLUvrnRaYjuFbUt4PpCK6Eq+3eZw6WeI5lyhipDTPaU/Tvf/9bJ510UvRxXl6eJGnixIl67LHH9Mtf/lJlZWW64oorVFRUpNGjR2vJkiVKSkoyFRkAAAAAAABAK2S0I/XEE0+U4zT8y5rP59PMmTM1c+bMg5gKAAAAAAAAaLnCjl/hOFWOxqvdQwFbBgAAAAAAAAAaYfcgkAAAAAAAAEAr48iniOIzdrUTp3YPBVSkAgAAAAAAAEAjqEgFAAAAAAAALMIYqWawZQAAAAAAAACgEa2mIjWhPKyEhLDpGDELBe0el6I8M9F0BNfaf1FlOoIn4aSA6Qiu+WsipiN4UjzY3kNr5jb7jpPf5gSCpiO45vjtPd77ax3TETzxRezNH9pj9/EyYvF5TkUHu+sRapPs3faJe+3e76vT7T1Hc3z2Hi8lu485icU1piO4VpNm7z4vSTXtkk1HcC210M5z+9oaO3MfbBHHp4gTn+NavNo9FNh9BggAAAAAAAAAB4G9ZVMAAAAAAABAKxSWX+E41UfGq91DAVsGAAAAAAAAABpBRSoAAAAAAABgEcZINYOKVAAAAAAAAABoBBWpAAAAAAAAgEUi8isSp/rIeLV7KGDLAAAAAAAAAEAjqEgFAAAAAAAALBJ2fArHaSzTeLV7KGg1HalV7RIUDtq3uuFEu3deX8R0AveqM+zbX76tsl3AdATXIvZGlySlbrN3xy/rEjIdwZNAtWM6gmvlnew95iRU2bvdJamsc6LpCK7Z/Dkr2X2ek1BuOoE3fouPlyU97D1eSlI4ZO9+n1hi734jSaESew+auwfae44WKrJ3u0tS4fBk0xFcS19nOoE74WounkbLZfdZCAAAAAAAANDKRByfInGqHI1Xu4cCuvkBAAAAAAAAoBFUpAIAAAAAAAAWcRy/Ik586iOdOLV7KGDLAAAAAAAAAEAjqEgFAAAAAAAALBKWT2HFZyzTeLV7KKAiFQAAAAAAAAAaQUUqAAAAAAAAYJGII0Wc+FSORpy4NHtIaDUdqcmFVUpIsK80ubZN0HQET8oz7d3FEovtPnLE6Xh6UCRU2r3tg2UR0xFccwKmE3gTsfA4v5+/xt79vrqN3Re4JBWFTUdwraifvZ+zkhSoNJ3AveSd9h7rJSkStPd46bP3cGk9f63dG7+ig72fVwnl9m77RIvPjSUpscjez1qfpb1hPrt3GRzi7P0kAQAAAAAAAFqhiOOP6+TG/Pnz1atXLyUlJWnEiBH68MMPv3f5oqIiTZkyRZ07d1YoFNLhhx+u1157zVOb8UZHKgAAAAAAAADXFi9erLy8PM2YMUMrV67UkCFDNHbsWG3fvr3e5aurq/XDH/5QGzZs0PPPP6/Vq1fr4YcfVteuXV23eTDQkQoAAAAAAABYJCJfXKdYzZkzR5MnT9akSZM0aNAgLViwQCkpKVq0aFG9yy9atEi7d+/WSy+9pGOPPVa9evXSCSecoCFDhrhu82CgIxUAAAAAAABAHSUlJXWmqqqqeperrq5Wfn6+xowZE53n9/s1ZswYrVixot7XvPzyy8rNzdWUKVOUlZWlI488UrNmzVI4HHbd5sFARyoAAAAAAABgkbDji+skSd27d1dGRkZ0mj17dr1Zdu7cqXA4rKysrDrzs7KyVFBQUO9rvvrqKz3//PMKh8N67bXXdMstt+jee+/Vr3/9a9dtHgz23n4OAAAAAAAAQFxs3rxZ6enp0cehUKjZ2o5EIsrMzNQf/vAHBQIB5eTkaMuWLbrnnns0Y8aMZnuf5kZHKgAAAAAAAGCRiONXxInPheb7201PT6/TkdqQjh07KhAIqLCwsM78wsJCZWdn1/uazp07KxgMKhAIROcNHDhQBQUFqq6udtXmwcCl/QAAAAAAAABcSUxMVE5OjpYuXRqdF4lEtHTpUuXm5tb7mmOPPVZr165VJBKJzvvyyy/VuXNnJSYmumrzYGg1FakVmSElBJuvBPlgKe0aaHyhFiy41zEdwbWyznb/eSSW2rvt/TX2ZpeksiyL/25jvzlji5K8K9L4Qi1UQlnYdATX4vRD+EETDtm7Aj57dxtJUqLF5wl7Btq730hSx4/t3Xn2drf4c1ZSQrm9+72/1nQCbxyLz3NCpfae49Qm2X28tJmt5wm25j7YIvIpEqcDW8TFF8O8vDxNnDhRw4YN0/DhwzVv3jyVlZVp0qRJkqQJEyaoa9eu0XFWr776at1///269tprNW3aNK1Zs0azZs3SNddc0+Q2TbC7pwgAAAAAAACAUeeff7527NihW2+9VQUFBRo6dKiWLFkSvVnUpk2b5Pf/94eV7t276/XXX9f111+vwYMHq2vXrrr22mt10003NblNE+hIBQAAAAAAACziyOeqcrSpbbsxdepUTZ06td7n3nrrrQPm5ebm6v3333fdpgnU2AMAAAAAAABAI6hIBQAAAAAAACwSceI4RqrNg0rHGRWpAAAAAAAAANAIKlIBAAAAAAAAi0QcvyJOfOoj49XuoYAtAwAAAAAAAACNoCIVAAAAAAAAsAhjpJrRajpSy7MCCiQGTMeIWWKJYzpCq1WeafeBI21TtekIrkUS7S6W99fam9/2z8uIfYf5qJ1DEk1HcC20y+7Pqpp0e3d8v72HeklSqCRsOoJrWR/avd9vPyZoOoJryTvs3vYpO+3d78syLf6glVTRyd7jfSTB3m2fUGH332xChekE7lW2t3OfD1fZmRutQ6vpSAUAAAAAAAAOBRH5FFGcKlLj1O6hwN6yKQAAAAAAAAA4SKhIBQAAAAAAACzCGKlmUJEKAAAAAAAAAI2gIhUAAAAAAACwCBWpZlCRCgAAAAAAAACNoCIVAAAAAAAAsAgVqWa0mo7U2mTJCZlOEbuaNnbvvIEq0wncSyx2TEfwpKxLoukIrkUsPzJVZNr7dxsJmE7gTWi16QTuJZSZTuAB17cYEyqKmI7gSXknew86gUrTCbzp9HGt6QiuFfWz+0Rhbzd78yeU231+nLbZ3vyVHew9v/SVm07gTdjer1UKVJtO4I5j9+kNDnH2fooDAAAAAAAArRAVqWZQQwIAAAAAAAAAjaAiFQAAAAAAALCIIymi+FSO2jsQSvxRkQoAAAAAAAAAjaAiFQAAAAAAALAIY6SaQUUqAAAAAAAAADSCilQAAAAAAADAIlSkmkFFKgAAAAAAAAA0otVUpAZLHQWq7bvvWCTR7l8BnIDpBO7VpNu97f019u3v+1V2tHvbt9kcMR3BtYqOdv++FgnYu++Ek0wncM+xeLtLUkUne4+Xwb12b/uIxWeilV3s3vY1qfaepPmrTCfwxurjvd/u/T64197jfdJOe7OXWX68tHnbV2fYue3D9m7yg4qKVDPs/sYMAAAAAAAAAAeBxXUAAAAAAAAAQOtDRaoZVKQCAAAAAAAAQCOoSAUAAAAAAAAs4jg+OXGqHI1Xu4cCKlIBAAAAAAAAoBFUpAIAAAAAAAAWiciniOI0Rmqc2j0UUJEKAAAAAAAAAI1oNRWp4ZBPCtnXo55Q7piO4ElpT9MJ3Esssm9/+baaNHvz+yKmE3hT1c7e36iCpXYfcyo62rvtAxWmE7jnBEwn8CZ1q73Hy9pk0wm8cSw+E834Kmw6gif+WtMJ3CvPtPdYL0nJW+39rA1U2ZtdknYNsvcDy+bP2rSNdu834ZDpBO5VZtq57SOVduY+2CKOT5E4jWUar3YPBXafhQAAAAAAAADAQWBxHQAAAAAAAADQ+jiOT06cKkfj1e6hgIpUAAAAAAAAAGgEFakAAAAAAACARRgj1QwqUgEAAAAAAACgEVSkAgAAAAAAABZhjFQzqEgFAAAAAAAAgEZQkQoAAAAAAABYxInjGKlUpDas1XSkpuyIKBCMmI4Rs7097C4aTig1ncC9hHLTCTziuGdMdZrpBO75Uu3ecYIWH3NCJfZ9Ru23t7vdn1VOwHQC90K7TSfwpqqd6QTulXa1eMeRFAmaTuBeONF0Am/Kutj7WeuvNZ3AG8fmjyt7dxvtOtoxHcGT9C/t3XF8NXZue1+N6QRAw4weEWbPnq0f/OAHSktLU2Zmps4991ytXr26zjKVlZWaMmWKOnTooDZt2mj8+PEqLCw0lBgAAAAAAAAwy5HkOHGaTK9cC2a0I3X58uWaMmWK3n//fb3xxhuqqanRqaeeqrKysugy119/vV555RU999xzWr58ubZu3apx48YZTA0AAAAAAACgtTF6af+SJUvqPH7ssceUmZmp/Px8HX/88SouLtbChQv11FNP6eSTT5YkPfrooxo4cKDef/99jRw58oA2q6qqVFVVFX1cUlIS35UAAAAAAAAADqKIfPLFadyPiM3jicRZixrso7i4WJLUvn17SVJ+fr5qamo0ZsyY6DIDBgxQjx49tGLFinrbmD17tjIyMqJT9+7d4x8cAAAAAAAAwCEtpo7U2tpaPf7443EZozQSiei6667TscceqyOPPFKSVFBQoMTERLVt27bOsllZWSooKKi3nenTp6u4uDg6bd68udmzAgAAAAAAAKY4ji+uE+oX06X9CQkJuuqqq/T55583e5ApU6boP//5j959911P7YRCIYVCoWZKBQAAAAAAAAAuLu0fPny4Pvroo2YNMXXqVP31r3/VsmXL1K1bt+j87OxsVVdXq6ioqM7yhYWFys7ObtYMAAAAAAAAgA0iji+uE+oX882m/t//+3/Ky8vT5s2blZOTo9TU1DrPDx48uMltOY6jadOm6cUXX9Rbb72l3r1713k+JydHwWBQS5cu1fjx4yVJq1ev1qZNm5SbmxtT7qJ+fgWSWtSQsE2SuMd0Am8iQdMJ3AuWOqYjeFLWxd4DX6Ll94ir7WDvvuOzN7okqTrDdAL3alPt+4zaL2L5hSAZayOmI7i26yh7j/WSFE6y96CTvt7ubV/ZweL8FkeXpJDF5/eJlp8fl/S2d+dx/PZu+8Qie89xJKm2jekE7qVtMp3AnXC16QRAw2LuSP3Zz34mSbrmmmui83w+nxzHkc/nUzgcbnJbU6ZM0VNPPaW//OUvSktLi457mpGRoeTkZGVkZOiyyy5TXl6e2rdvr/T0dE2bNk25ubkaOXJkrNEBAAAAAAAA6znOvilebaN+MXekrl+/vtne/MEHH5QknXjiiXXmP/roo7rkkkskSXPnzpXf79f48eNVVVWlsWPH6oEHHmi2DAAAAAAAAADQmJg7Unv27Nlsb+40oYs7KSlJ8+fP1/z585vtfQEAAAAAAABbOY5PTpzGMo1Xu4eCmDtSH3/88e99fsKECa7DAAAAAAAAAEBLFHNH6rXXXlvncU1NjcrLy5WYmKiUlBQ6UgEAAAAAAIA4oiLVjJhvn7dnz546U2lpqVavXq3Ro0fr6aefjkdGAAAAAAAAADAq5orU+hx22GG68847ddFFF+mLL75ojiYBAAAAAAAA1CPi+OSLU+VohIrUBsVckdqQhIQEbd26tbmaAwAAAAAAAIAWI+aK1JdffrnOY8dxtG3bNt1///069thjmy1Yc0sskQJVplPErjLTMR3Bk+Bee3/FqEmzN7skhZNMJ3Bvb4eI6QiehHY3229UB11tit3HnIQye/9uE0pNJ3DPX2M6gTd7u9v7N5u0y3QCb/zV9v7NlnYzncAbm88T5LP7s8rx2bvfV2TZm12SIkF7953UrfZu+7297D63l2PveUI4ZOd+E66yM/fB5jj7pni17cb8+fN1zz33qKCgQEOGDNF9992n4cOH17vsY489pkmTJtWZFwqFVFlZGX1cWlqqm2++WS+99JJ27dql3r1765prrtFVV13lLmAziLkj9dxzz63z2OfzqVOnTjr55JN17733NlcuAAAAAAAAABZYvHix8vLytGDBAo0YMULz5s3T2LFjtXr1amVmZtb7mvT0dK1evTr62PedHxvz8vL05ptv6oknnlCvXr3097//Xf/v//0/denSRWeffXZc16chMXekRiKW/5oEAAAAAAAAWGxfRWp8qnf3V6SWlJTUmR8KhRQKhep9zZw5czR58uRolemCBQv06quvatGiRbr55pvrfY3P51N2dnaDOd577z1NnDhRJ554oiTpiiuu0EMPPaQPP/zQWEeqpxp1x3HkxKuOGAAAAAAAAIAR3bt3V0ZGRnSaPXt2vctVV1crPz9fY8aMic7z+/0aM2aMVqxY0WD7paWl6tmzp7p3765zzjlHn332WZ3nR40apZdffllbtmyR4zhatmyZvvzyS5166qnNs4IuuOpIffzxx3XUUUcpOTlZycnJGjx4sP70pz81dzYAAAAAAAAA3+E4vrhOkrR582YVFxdHp+nTp9ebZefOnQqHw8rKyqozPysrSwUFBfW+pn///lq0aJH+8pe/6IknnlAkEtGoUaP09ddfR5e57777NGjQIHXr1k2JiYk67bTTNH/+fB1//PHNtBVjF/Ol/XPmzNEtt9yiqVOnRm8u9e677+qqq67Szp07df311zd7SAAAAAAAAAAHT3p6utLT0+PSdm5urnJzc6OPR40apYEDB+qhhx7SHXfcIWlfR+r777+vl19+WT179tTbb7+tKVOmqEuXLnWqXw+mmDtS77vvPj344IOaMGFCdN7ZZ5+tI444QrfddhsdqQAAAAAAAEAcOd9M8Wo7Fh07dlQgEFBhYWGd+YWFhd87Buq3BYNBHX300Vq7dq0kqaKiQr/61a/04osv6swzz5QkDR48WB999JF++9vfGutIjfnS/m3btmnUqFEHzB81apS2bdvWLKEAAAAAAAAAtHyJiYnKycnR0qVLo/MikYiWLl1ap+r0+4TDYX366afq3LmzJKmmpkY1NTXy++t2XQYCAUUikeYLH6OYK1L79eunZ599Vr/61a/qzF+8eLEOO+ywZgvW3CJByRc0nSJ2TsB0gtarsqPpBN6kbrX3RnC1SZ7ug2dcJNF0AvdsP+Yk7bJ3v1d8brh5UFSnWxxekmPxIcepNp3Am7CF52b71aRZfLyR1Ycc+cKmE3hT3c7efSdYYvOeI/kGlZqO4FpxWorpCK45qXb/0SaU2Xtyn1hkOoE7/irTCezw7bFM49F2rPLy8jRx4kQNGzZMw4cP17x581RWVqZJkyZJkiZMmKCuXbtGb1g1c+ZMjRw5Uv369VNRUZHuuecebdy4UZdffrmkfcMKnHDCCbrxxhuVnJysnj17avny5Xr88cc1Z86c5lvZGMXckXr77bfr/PPP19tvvx0dI/Wf//ynli5dqmeffbbZAwIAAAAAAABouc4//3zt2LFDt956qwoKCjR06FAtWbIkegOqTZs21aku3bNnjyZPnqyCggK1a9dOOTk5eu+99zRo0KDoMs8884ymT5+uCy+8ULt371bPnj31m9/8RlddddVBX7/9fI7jxPyTaH5+vubOnavPP/9ckjRw4EDdcMMNOvroo5s9oFclJSXKyMhQ/+tmKRBKMh0nZlXt7f3FWpISi+z91Tps3+5SR8o2e/ed2iR79xvJ7opU2485bTaaTuCBxbt9RabF4WV3Rarf8opUm1GRao7tFak2X/1he0Vq5Oi9piO4VlVARaopoc32ntyHdptO4E64qlKfP/grFRcXx+1GRzbb38/V54+/UiAlPh0X4fJKfTVxFv8G9Yi5IlWScnJy9MQTTzR3FgAAAAAAAABokZrckVpSUtKk5eipBgAAAAAAAOIojmOkKl7tHgKa3JHatm1b+XwNb0jHceTz+RQO2122DwAAAAAAAADf1eSO1GXLlkX/33EcnXHGGXrkkUfUtWvXuAQDAAAAAAAAcCDH2TfFq23Ur8kdqSeccEKdx4FAQCNHjlSfPn2aPRQAAAAAAAAAtCSubjYFAAAAAAAAwAwnjmOkxm3s1UNAq+lIDVRKAQtLkxP32L3zVnWwcKN/I32d6QTeVGfYu+84ftMJvAmHTCfwwN7dRpIUSbR3BarTTCdwryYtYjqCJ8mF9h50nIDpBN7UJptO4J6/xnQCbxL32nu8tP27nc3nORVd7L4fRtp79n7YVvavNR3BtfRPEk1H8CRQZe932opMOw+Y4UrTCYCGeepI/b6bTwEAAAAAAACIA8cXv18Xbf/VMo6a3JE6bty4Oo8rKyt11VVXKTU1tc78F154oXmSAQAAAAAAAEAL0eSO1IyMjDqPL7roomYPAwAAAAAAAOD7Oc6+KV5to35N7kh99NFH45kDAAAAAAAAAFqsVnOzKQAAAAAAAOCQ4Hwzxatt1Mvie0YCAAAAAAAAwMFBRSoAAAAAAABgEcfxyXF8cWsb9Ws1HamlPSPyJ0VMx4iZz77Ih4xIwO6C7XDIdAL3/DWmE3jjWLzrhBPtvoajrIvpBO7VZoRNR3DNl1JrOoInFUo0HcE1X63dJ7l+m3cduw+Xilj8LaA2xe6NHyy19+82WGLxSY7sPj8O7gmYjuBaaS+7v9SmbLF3v69NtfN4GQnYmRutQ0xHhJqaGl166aVav359vPIAAAAAAAAAaIwTpwkNiqkjNRgM6s9//nO8sgAAAAAAAABAixRzjfq5556rl156KQ5RAAAAAAAAADRm/xip8ZpQv5hHRzrssMM0c+ZM/fOf/1ROTo5SU1PrPH/NNdc0WzgAAAAAAAAAaAli7khduHCh2rZtq/z8fOXn59d5zufz0ZEKAAAAAAAAxFM8xzNlnNQGxdyRyo2mAAAAAAAAALQ2MY+Rul91dbVWr16t2tra5swDAAAAAAAA4Hv54jyhPjF3pJaXl+uyyy5TSkqKjjjiCG3atEmSNG3aNN15553NHhAAAAAAAAAATIv50v7p06fr448/1ltvvaXTTjstOn/MmDG67bbbdPPNNzdrwOYSqPbJ77evRz1xj32Zvy2cbDqBe3v7RkxH8CRtveuCc+PKs+wekCVk8d+tE7A3uyRFEk0ncM9fZe/fbMQX8+lEi5JcYO+2r+po9/EyWGrvMaeqnd3bvjrR3vzBEnv3G0mqzrB320fsPtyrpnvYdAT3au3d720+1ktSWTd7vxcGKi3d9vYeJg8uxkg1IuaPwpdeekmLFy/WyJEj5fP994/yiCOO0Lp165o1HAAAAAAAAAC0BDGXYOzYsUOZmZkHzC8rK6vTsQoAAAAAAAAgDpw4T4eAoqIiPfLII5o+fbp2794tSVq5cqW2bNnius2YO1KHDRumV199Nfp4f+fpI488otzcXNdBAAAAAAAAAMCrTz75RIcffrjuuusu/fa3v1VRUZEk6YUXXtD06dNdtxvzpf2zZs3S6aefrlWrVqm2tla/+93vtGrVKr333ntavny56yAAAAAAAAAAmsDx7Zvi1bbl8vLydMkll+juu+9WWlpadP4ZZ5yhn//8567bjbkidfTo0fr4449VW1uro446Sn//+9+VmZmpFStWKCcnx3UQAAAAAAAAAPDqX//6l6688soD5nft2lUFBQWu242pIrWkpEQffPCBqqurNWvWLHXq1Mn1GwMAAAAAAACInePsm+LVtu1CoZBKSkoOmP/ll1966s9sckXqRx99pAEDBui0007Tj370I/Xr10+vv/666zcGAAAAAAAAgOZ29tlna+bMmaqpqZG07x5PmzZt0k033aTx48e7brfJFak33XSTevfurT//+c9KSkrSHXfcoalTp2rNmjWu3/xg8oX3TbYp61djOoInvpCFG/0bieuTTEfwpHhYlekIriUUJJqO4MneI6pNR3AtZZ3d277Gb+9Pp4Ee5aYjuJb4RRvTETypyI6YjuBasDTmUZpalLDFh5xIor3HG0mKJNu73/siAdMRPInEfJeKliNg7ymOJClYau++U5ts7zEn3KvSdARvwvaOFRmw9Tttpb3b/KByvpni1bbl7r33Xp133nnKzMxURUWFTjjhBBUUFCg3N1e/+c1vXLfb5I/x/Px8/f3vf9cxxxwjSVq0aJHat2+vkpISpaenuw4AAAAAAAAAAM0lIyNDb7zxht5991198sknKi0t1THHHKMxY8Z4arfJHam7d+9Wt27doo/btm2r1NRU7dq1i45UAAAAAAAA4GBxfPumeLV9iBg9erRGjx7dbO3FdGHJqlWr6tzZynEcff7559q7d2903uDBg5stHAAAAAAAAAA05ve//32Tl73mmmtcvUdMHamnnHKKnO/cuuuss86Sz+eT4zjy+XwKh+0dExMAAAAAAABo6XzOvilebdto7ty5dR7v2LFD5eXlatu2rSSpqKhIKSkpyszMjH9H6vr16129AQAAAAAAAADE07f7Lp966ik98MADWrhwofr37y9JWr16tSZPnqwrr7zS9Xs0uSO1Z8+ert8EAAAAAAAAQDNxvpni1bblbrnlFj3//PPRTlRJ6t+/v+bOnavzzjtPF154oat2/c0VEAAAAAAAAABM27Ztm2praw+YHw6HVVhY6LpdOlIBAAAAAAAAmzi++E6WO+WUU3TllVdq5cqV0Xn5+fm6+uqrNWbMGNftxnSzKZvVpjjyJ9lXmxwosvyfyB8wncA1x2/f/vJtqatCpiO4Vt45YjqCJ4HdQdMRXKtqZ/d+b+2o6JLavpFqOoJru46tNh3Bk+SvEk1HcK02xd59XpLCFucPFttdj1Ddwd6/29qw3V/ufBn2bvuaPfYeLyXJCdp7zJHFp8cJXyeZjuBJgsXbvrq9nTcDj1TYmRsty6JFizRx4kQNGzZMweC+7+i1tbUaO3asHnnkEdftWt5LBwAAAAAAALQyjJH6vTp16qTXXntNX375pb744gtJ0oABA3T44Yd7ajfmjtSKigo5jqOUlBRJ0saNG/Xiiy9q0KBBOvXUUz2FAQAAAAAAAIDmcPjhh3vuPP22mDtSzznnHI0bN05XXXWVioqKNGLECAWDQe3cuVNz5szR1Vdf3WzhAAAAAAAAAHwHFanf69JLL/3e5xctWuSq3ZgHd1q5cqWOO+44SdLzzz+vrKwsbdy4UY8//rh+//vfuwoBAAAAAAAAAM1hz549dabt27frzTff1AsvvKCioiLX7cZckVpeXq60tDRJ0t///neNGzdOfr9fI0eO1MaNG10HAQAAAAAAANAEVKR+rxdffPGAeZFIRFdffbX69u3rut2YK1L79eunl156SZs3b9brr78eHRd1+/btSk9Pdx0EAAAAAAAAAOLB7/crLy9Pc+fOdd9GrC+49dZb9Ytf/EK9evXSiBEjlJubK2lfderRRx/tOggAAAAAAACAJnB88Z0OUevWrVNtba3r18d8af95552n0aNHa9u2bRoyZEh0/imnnKJx48a5DhJvwSK/AqGY+42Nq24XMR3Bk4RSe//4UgrtzS5JxYeHTUdwLXlbwHQET5yYj6wtR0XPatMRPPGX2Lvxy7rbe8xJ3BY0HcGTqvb2ftYm7bDv3ObbartVmY7gWm1toukInvi325vfsfs0QdoZMp3AvQS7r/X0t6kxHcG1SJm95zi1He3d7pKUWGDveY4TsPNv1tbcaFny8vLqPHYcR9u2bdOrr76qiRMnum435qPxpZdeqt/97ncHVJ8eccQRmjZtmuu7XgEAAAAAAABonM/ZN8Wrbdv93//9X53Hfr9fnTp10r333qtLL73Udbsxd6T+8Y9/1J133hm94dR+FRUVevzxx+lIBQAAAAAAAGDMsmXL4tJuk68HKykpUXFxsRzH0d69e1VSUhKd9uzZo9dee02ZmZlxCQkAAAAAAADgG06cJ8udfPLJKioqOmB+SUmJTj75ZNftNrkitW3btvL5fPL5fDr88MMPeN7n8+n22293HQQAAAAAAAAAvHrrrbdUXX3gPUAqKyv1zjvvuG63yR2py5Ytk+M4Ovnkk/XnP/9Z7du3jz6XmJionj17qkuXLq6DAAAAAAAAAIBbn3zySfT/V61apYKCgujjcDisJUuWqGvXrq7bb3JH6gknnCBJWr9+vbp37y6/3+67xAIAAAAAAAA4dAwdOjR6RX19l/AnJyfrvvvuc91+zDeb6tmzp4qKivThhx9q+/btikQidZ6fMGGC6zAAAAAAAAAAvp9Pki9OY5n64tPsQbF+/Xo5jqM+ffroww8/VKdOnaLPJSYmKjMzU4FAwHX7MXekvvLKK7rwwgtVWlqq9PR0+Xz/3bw+n4+OVAAAAAAAAKCVmT9/vu655x4VFBRoyJAhuu+++zR8+PB6l33sscc0adKkOvNCoZAqKyvrzPv888910003afny5aqtrdWgQYP05z//WT169Ki33Z49e0rSAYWfzSXmjtQbbrhBl156qWbNmqWUlJR4ZIqLquxa+ZNrTceIma/W5t8BJPnszV88rMp0BG/KYv7zbjHCSaYTeBMJ2nuLQ1+F+1/mWoKEcnuPOZXdDhwI3RqOvdtdkvxJ9p0f7FfR0e5tn/ofew/44aDpBN4Ef7DHdATX9m7MMB3Bk0CVvX+3oW12D+9WHg6ZjuCaPz79AQdFJNni8JLCSfae2yfutvPcPlJpZ+6DzvHF7zzcRbuLFy9WXl6eFixYoBEjRmjevHkaO3asVq9erczMzHpfk56ertWrV0cf+77Th7Ru3TqNHj1al112mW6//Xalp6frs88+U1JS/eeQL7/8sk4//XQFg0G9/PLL35v37LPPjnEN94m5p2XLli265pprmqUT9cEHH9SDDz6oDRs2SJKOOOII3XrrrTr99NMl7buT1g033KBnnnlGVVVVGjt2rB544AFlZWV5fm8AAAAAAAAA3s2ZM0eTJ0+OVpkuWLBAr776qhYtWqSbb7653tf4fD5lZ2c32Ob//M//6IwzztDdd98dnde3b98Glz/33HNVUFCgzMxMnXvuuQ0u5/P5FA6HG1mj+sX8k+LYsWP173//29WbfVe3bt105513Kj8/X//+97918skn65xzztFnn30mSbr++uv1yiuv6LnnntPy5cu1detWjRs3rlneGwAAAAAAALCSE+dJUklJSZ2pqqr+K3erq6uVn5+vMWPGROf5/X6NGTNGK1asaHAVSktL1bNnT3Xv3r1Of6C079L8V199VYcffrjGjh2rzMxMjRgxQi+99FKD7UUikWj1ayQSaXBy24kquahIPfPMM3XjjTdq1apVOuqooxQM1r2uKZbS2B/96Ed1Hv/mN7/Rgw8+qPfff1/dunXTwoUL9dRTT0XvsvXoo49q4MCBev/99zVy5MhYowMAAAAAAABogu7du9d5PGPGDN12220HLLdz506Fw+EDriDPysrSF198UW/b/fv316JFizR48GAVFxfrt7/9rUaNGqXPPvtM3bp10/bt21VaWqo777xTv/71r3XXXXdpyZIlGjdunJYtW6YTTjih2dYzFjF3pE6ePFmSNHPmzAOe81IaGw6H9dxzz6msrEy5ubnKz89XTU1Nnd7sAQMGqEePHlqxYkWDHalVVVV1eshLSkpc5QEAAAAAAABapG9VjsalbUmbN29Wenp6dHYo1HxjTefm5io3Nzf6eNSoURo4cKAeeugh3XHHHdGbRZ1zzjm6/vrrJUlDhw7Ve++9pwULFtTbkfr73/++ye9/zTXXuModc0dqc9/16tNPP1Vubq4qKyvVpk0bvfjiixo0aJA++ugjJSYmqm3btnWWz8rKUkFBQYPtzZ49W7fffnuzZgQAAAAAAABak/T09DodqQ3p2LGjAoGACgsL68wvLCz83jFQvy0YDOroo4/W2rVro20mJCRo0KBBdZYbOHCg3n333XrbmDt3bpPey+fzHbyO1ObWv39/ffTRRyouLtbzzz+viRMnavny5a7bmz59uvLy8qKPS0pKDihFBgAAAAAAAGzlc/ZN8Wo7FomJicrJydHSpUujN3mKRCJaunSppk6d2qQ2wuGwPv30U51xxhnRNn/wgx9o9erVdZb78ssv1bNnz3rbWL9+fWzBXWhSR+rvf/97XXHFFUpKSmq0TDbWHt3ExET169dPkpSTk6N//etf+t3vfqfzzz9f1dXVKioqqlOV2lhvdigUatZSYwAAAAAAAAANy8vL08SJEzVs2DANHz5c8+bNU1lZmSZNmiRJmjBhgrp27arZs2dL2jdk6MiRI9WvXz8VFRXpnnvu0caNG3X55ZdH27zxxht1/vnn6/jjj9dJJ52kJUuW6JVXXtFbb70VUzbH2dcz7PP5PK9nkzpS586dqwsvvFBJSUnfWybrpTR2v0gkoqqqKuXk5CgYDGrp0qUaP368JGn16tXatGlTnTEUAAAAAAAAgFblIIyRGovzzz9fO3bs0K233qqCggINHTpUS5Ysid6AatOmTfL7/dHl9+zZo8mTJ6ugoEDt2rVTTk6O3nvvvTqX8v/4xz/WggULNHv2bF1zzTXq37+//vznP2v06NFNyrRw4ULNnTtXa9askSQddthhuu666+p01sbK5+zvljVg+vTpOv3009WjRw/t3btXTz31lO666y69/vrr+uEPf6irr75ar732mh577DGlp6dr2rRpkqT33nuvye9RUlKijIwMdf/DrfInJ8VrVeLGF6867YPEv9W+bb5fJGj3trd614l4/5XIJMfifSeS6u6GgS1FoDhgOoJrkUR79xsnxe79xldl734T3O1vfKEWrDqr1nQE1xLa1JiO4EmkwN5ztEDnCtMRPKmtMj66mmu+hOa9X8bBFikNmo7gnr2nCfKn2X28DCba+1kVCdt5nhApr9T6S3+j4uLiJo3P2drs7+fq9evfyJ8Un8/zSGWlNvzv/1j9b3Drrbdqzpw5mjZtWrQgc8WKFbr//vt1/fXXa+bMma7a9fQp7rU0dvv27ZowYYK2bdumjIwMDR48ONqJKu2rhPX7/Ro/fryqqqo0duxYPfDAA14iAwAAAAAAAHZrYRWpLc2DDz6ohx9+WBdccEF03tlnn63Bgwdr2rRpB7cj9fHHH9c999wTLY09/PDDdeONN+riiy+OqZ2FCxd+7/NJSUmaP3++5s+f7yYmAAAAAAAAgFampqZGw4YNO2B+Tk6OamvdV5rHXOc9Z84cXX311TrjjDP07LPP6tlnn9Vpp52mq6666nvHTwUAAAAAAADgnc+J72S7iy++WA8++OAB8//whz/owgsvdN1uzBWp9913nx588EFNmDAhOu/ss8/WEUccodtuu03XX3+96zAAAAAAAAAA4NXChQv197//XSNHjpQkffDBB9q0aZMmTJigvLy86HJz5sxpcpsxd6Ru27ZNo0aNOmD+qFGjtG3btlibAwAAAAAAABALx7dvilfblvvPf/6jY445RpK0bt06SVLHjh3VsWNH/ec//4kuF+t9n2LuSO3Xr5+effZZ/epXv6ozf/HixTrssMNibQ4AAAAAAAAAms2yZcvi0m7MHam33367zj//fL399ts69thjJUn//Oc/tXTpUj377LPNHhAAAAAAAADAtzjfTPFqG/WKuSN1/Pjx+vDDDzVnzhy99NJLkqSBAwfqww8/1NFHH93c+ZpPcVCqDppOEbNIath0BE+cJHv/+mwfXDmSYO8KOAkR0xG8CdqbP3GrfcfJb6vOdH/3RdN8SRYf76sDphN44oTs3fbVHew91tsu+HmK6QieVB5WaTqCa7Xbk01H8CRQaf/lkrZyOleZjuBaapq9f7PlZSHTETyp2mtx/pqY7y/eIkQqOL+Bd5WVlbrvvvu0bNkybd++XZFI3e/pK1eudNVuTB2pJSUl+uCDD1RdXa25c+eqU6dOrt4UAAAAAAAAgDs+J34FYLYXlknSZZddpr///e8677zzNHz48JjHQm1IkztSP/roI51xxhkqLCyU4zhKS0vTs88+q7FjxzZLEAAAAAAAAADw6q9//atee+216LCkzaXJdd433XSTevfurXfffVf5+fk65ZRTNHXq1GYNAwAAAAAAAKARTpwny3Xt2lVpaWnN3m6TO1Lz8/N13333KTc3V0cffbQWLVqkdevWqaSkpNlDAQAAAAAAAIAb9957r2666SZt3LixWdtt8qX9u3fvVrdu3aKP27Ztq9TUVO3atUvp6enNGgoAAAAAAABAA+I4RuqhUJE6bNgwVVZWqk+fPkpJSVEwWPfGyrt373bVbkw3m1q1apUKCgqijx3H0eeff669e/dG5w0ePNhVEAAAAAAAAADw6oILLtCWLVs0a9YsZWVlHfybTUnSKaecIsep2y191llnyefzyXEc+Xw+hcPhZgkGAAAAAAAAoB7xHMv0EKhIfe+997RixQoNGTKkWdttckfq+vXrm/WNAQAAAAAAAKC5DRgwQBUVFc3ebpM7Unv27Nnsb34wOUkROUkR0zFiV93k+4G1SE7Iwm3+Dcdv908wCW1qTEdwrbY02PhCLVhyRqXpCK7Vpti730iS9oRMJ3Bvr737vb+6eS6TMSWSYu9nlc+xe9sndygzHcG1iiSLjzeSnFp7zzETs8tNR/AkKWTvZ23E8mOOP26DCcafvcklpzjRdARvUmpNJ3AtNdPOz9lweZXpCHagIvV73Xnnnbrhhhv0m9/8RkcdddQBY6S6vd9TTJf2AwAAAAAAAEBLdtppp0naN0zpt3kdmpSOVAAAAAAAAMAiPmffFK+2bbds2bIGn/v0009dt0tHKgAAAAAAAIBDxgknnFDn8d69e/X000/rkUceUX5+vqZOneqqXXsHRwIAAAAAAACABrz99tuaOHGiOnfurN/+9rc6+eST9f7777tuz1VFam1trd566y2tW7dOP//5z5WWlqatW7cqPT1dbdq0cR0GAAAAAAAAANwqKCjQY489poULF6qkpEQ//elPVVVVpZdeekmDBg3y1HbMFakbN27UUUcdpXPOOUdTpkzRjh07JEl33XWXfvGLX3gKAwAAAAAAAKARTpwnS/3oRz9S//799cknn2jevHnaunWr7rvvvmZrP+aO1GuvvVbDhg3Tnj17lJycHJ3/4x//WEuXLm22YAAAAAAAAADQVH/729902WWX6fbbb9eZZ56pQCDQrO3HfGn/O++8o/fee0+JiYl15vfq1UtbtmxptmDNzZcYli8xbDpGzJyIz3SEVssXsPgnGEm1e4OmI7g24sh1piN48q/1PU1HcM1XGDIdwRNfx2rTEVzz7UpsfKEWqtOAnaYjeFJebe/xsrwsyXQETyor7N3vnWq7bzUQSKk1HcG16j127/fVPns/a3v12W46gicb1meajuCexV9N/On2np9Jkort/awqL7Vz6MVIBfdFbwqfs2+KV9u2evfdd7Vw4ULl5ORo4MCBuvjii/Wzn/2s2dqP+QwwEokoHD6wQ/Lrr79WWlpas4QCAAAAAAAAgFiMHDlSDz/8sLZt26Yrr7xSzzzzjLp06aJIJKI33nhDe/fu9dR+zB2pp556qubNmxd97PP5VFpaqhkzZuiMM87wFAYAAAAAAABAEzA+aoNSU1N16aWX6t1339Wnn36qG264QXfeeacyMzN19tlnu2435o7Ue++9V//85z81aNAgVVZW6uc//3n0sv677rrLdRAAAAAAAAAAaE79+/fX3Xffra+//lpPP/20p7ZiHniiW7du+vjjj/XMM8/ok08+UWlpqS677DJdeOGFdW4+BQAAAAAAACAO4lk9eohUpX5XIBDQueeeq3PPPdd1G65G8E1ISNBFF13k+k0BAAAAAAAAwCZN6kh9+eWXm9ygl3EGAAAAAAAAAHw/n7NvilfbqF+TOlKbWvLq8/kUDoe95AEAAAAAAACAFqdJHamRSCTeOQAAAAAAAAA0BWOkGuFqjFQbORUJcixc3ZROZaYjeFLxdZrpCK45abWmI3jiS7K3OvyDL3ubjuBJYkqN6QiuVafZu99Ikj9g7ye+P7vSdATXyqoSTUfwpHRXiukIrvkS7f6x2wn7TEdwzR+y+3gZrrDvvHi/xHb2Hi8lqabS3m2/ZVeG6Qje1Np7zJHfdAD30tMrTEfwpNixd79J2BIyHcGVSKXFOzwOea72zqVLl+qss85S37591bdvX5111ln6xz/+0dzZAAAAAAAAAHzH/jFS4zWhfjF3pD7wwAM67bTTlJaWpmuvvVbXXnut0tPTdcYZZ2j+/PnxyAgAAAAAAAAARsV8XcmsWbM0d+5cTZ06NTrvmmuu0bHHHqtZs2ZpypQpzRoQAAAAAAAAwLcwRqoRMVekFhUV6bTTTjtg/qmnnqri4uJmCQUAAAAAAAAALUnMHalnn322XnzxxQPm/+Uvf9FZZ53VLKEAAAAAAAAANMCJ84R6xXxp/6BBg/Sb3/xGb731lnJzcyVJ77//vv75z3/qhhtu0O9///vostdcc03zJQUAAAAAAAAAQ2LuSF24cKHatWunVatWadWqVdH5bdu21cKFC6OPfT4fHakAAAAAAABAM/M5+6Z4tY36xdyRun79+njkiLtAWrX8KTGPZGBcVWWi6QieDBi8yXQE1z5f18V0BE/8IXuPfJGioOkInvhSq01HcM1fFjAdwRMnFDYdwbUO7feajuDajl1ppiN44rd4v2nfrsx0BE/CEZ/pCK4Vl6SYjuBJStsK0xFcq9ibZDqCJ/5gxHQE12oq7D5HC7avNB3BtZpSe78XFu1sYzqCJwP7bDUdwbUvnGzTEVyJVFSZjgA0KOaOVAAAAAAAAAAGxXMsU3vrsuIu5o5Ux3H0/PPPa9myZdq+fbsikbq/qL7wwgvNFg4AAAAAAAAAWoKYO1Kvu+46PfTQQzrppJOUlZUln8/eS7IAAAAAAAAA61CRakTMHal/+tOf9MILL+iMM86IRx4AAAAAAAAAaHFi7kjNyMhQnz594pEFAAAAAAAAQCN8zr4pXm2jfjHfxv62227T7bffrooKe+/0CQAAAAAAAACxiLki9ac//amefvppZWZmqlevXgoGg3WeX7lyZbOFAwAAAAAAAPAdjJFqRMwdqRMnTlR+fr4uuugibjYFAAAAAAAAoFWIuSP11Vdf1euvv67Ro0fHI0/cBAIR+QMR0zFiVr030XQET9ZsyzQdwbX0jmWmI3jSJqnKdATXtpZ0NB3Bk6rdyaYjuJbWu9h0BE8qK+w9ZpZXBxtfqIVq29bu46Xf4t+EA377zm2+LTWx1nQE13yWDx7WNb3EdATXvqjOMh3Bk9qagOkIriWn2Xt+KUnBhLDpCK717rTbdATX1my2+292c1Fb0xFca9vOznO0cKhKm02HsABjpJoR8xip3bt3V3p6ejyyAAAAAAAAAECLFHNH6r333qtf/vKX2rBhQxziAAAAAAAAAPheTpwn1CvmS/svuugilZeXq2/fvkpJSTngZlO7d9t7yQEAAAAAAAAA1CfmjtR58+bFIQYAAAAAAACAJoln5SgVqQ2KuSN14sSJ8cgBAAAAAAAAAC1WzB2p31ZZWanq6uo687gRFQAAAAAAABA/vm+meLWN+sV8s6mysjJNnTpVmZmZSk1NVbt27epMAAAAAAAAAFqX+fPnq1evXkpKStKIESP04YcfNrjsY489Jp/PV2dKSkpqcPmrrrpKPp/P+JCjMVek/vKXv9SyZcv04IMP6uKLL9b8+fO1ZcsWPfTQQ7rzzjvjkbFZpKZUKZBiOkXsynx2D0wRDIZNR3CtrDxkOoInteGYfydpMfxtakxH8KR9uzLTEVwrrwo2vlALVlsTMB3BtbKCDNMRXPNlVpmO4ElScnXjC7VQ5aV2f1Z1ziwyHcG13YV2X4XVM2OP6QiutU0vNx3Bk+LSZNMRXKuu9nRBo3Ftku39vFpX2NF0hFYrOdHe7yY2fydEE7SwMVIXL16svLw8LViwQCNGjNC8efM0duxYrV69WpmZmfW+Jj09XatXr44+9vnqr4V98cUX9f7776tLly6xB2tmMf9VvfLKK3rggQc0fvx4JSQk6LjjjtP//u//atasWXryySfjkREAAAAAAADAQVRSUlJnqqpq+AepOXPmaPLkyZo0aZIGDRqkBQsWKCUlRYsWLWrwNT6fT9nZ2dEpKyvrgGW2bNmiadOm6cknn1QwaL7wJ+aO1N27d6tPnz6S9vUc7969W5I0evRovf32282bDgAAAAAAAEAdPie+kyR1795dGRkZ0Wn27Nn1ZqmurlZ+fr7GjBkTnef3+zVmzBitWLGiwXUoLS1Vz5491b17d51zzjn67LPP6jwfiUR08cUX68Ybb9QRRxzhfaM1g5g7Uvv06aP169dLkgYMGKBnn31W0r5K1bZt2zZrOAAAAAAAAAAH3+bNm1VcXBydpk+fXu9yO3fuVDgcPqCiNCsrSwUFBfW+pn///lq0aJH+8pe/6IknnlAkEtGoUaP09ddfR5e56667lJCQoGuuuab5VsqjmAe5mTRpkj7++GOdcMIJuvnmm/WjH/1I999/v2pqajRnzpx4ZAQAAAAAAACw30EYIzU9PV3p6fEZFz43N1e5ubnRx6NGjdLAgQP10EMP6Y477lB+fr5+97vfaeXKlQ2OnWpCzB2p119/ffT/x4wZo88//1wrV65Uv379NHjw4GYNBwAAAAAAAKDl6tixowKBgAoLC+vMLywsVHZ2dpPaCAaDOvroo7V27VpJ0jvvvKPt27erR48e0WXC4bBuuOEGzZs3Txs2bGi2/LHwfAu3Xr16ady4cXSiAgAAAAAAAAeLE6cpRomJicrJydHSpUuj8yKRiJYuXVqn6vT7hMNhffrpp+rcubMk6eKLL9Ynn3yijz76KDp16dJFN954o15//fXYQzaTJnekrlixQn/961/rzHv88cfVu3dvZWZm6oorrvjeu3cBAAAAAAAAOPTk5eXp4Ycf1h//+Ed9/vnnuvrqq1VWVqZJkyZJkiZMmFBnjNWZM2fq73//u7766iutXLlSF110kTZu3KjLL79cktShQwcdeeSRdaZgMKjs7Gz179/fyDpKMVzaP3PmTJ144ok666yzJEmffvqpLrvsMl1yySUaOHCg7rnnHnXp0kW33XZbvLICAAAAAAAArZ7P2TfFq+1YnX/++dqxY4duvfVWFRQUaOjQoVqyZEn0BlSbNm2S3//fes49e/Zo8uTJKigoULt27ZSTk6P33ntPgwYNaq7ViAuf4zhN2jydO3fWK6+8omHDhkmS/ud//kfLly/Xu+++K0l67rnnNGPGDK1atSp+aV0oKSlRRkaGevzhFvlTkkzHiVlu3/WmI3iytqij6QiulVUlmo7gSW1twHQE15JD1aYjeOI4LWcg7FiFLc4uSRXlIdMRXPPF6ywIjTqy61bTEVxbVdC0MadaqvTUStMRXNu1u43pCJ6EkmtMR3AtK2Ov6QiebNjUyXQE17I6F5mO4ElayN4rKIsr7fsuu19Gkr3HeknaWhSfG+0cDEdlbzMdwZWasmq99MPHVFxcHLcbHdlsfz/XkVfMUiAxPseGcHWl/vOHX/FvUI8mV6Tu2bMn2ossScuXL9fpp58effyDH/xAmzdvbt50AAAAAAAAAOpyOZ5pk9tGvZo8RmpWVpbWr99XHVldXa2VK1dq5MiR0ef37t2rYDDY/AkBAAAAAAAAwLAmd6SeccYZuvnmm/XOO+9o+vTpSklJ0XHHHRd9/pNPPlHfvn3jEhIAAAAAAADAPvvHSI3XhPo1+dL+O+64Q+PGjdMJJ5ygNm3a6I9//KMSE/87huSiRYt06qmnxiUkAAAAAAAAAJjU5I7Ujh076u2331ZxcbHatGmjQKDujWyee+45tWlj96D7AAAAAAAAQIvHGKlGNLkjdb+MjIx657dv395zGAAAAAAAAABoiWLuSAUAAAAAAABgTjzHMmWM1Ia1mo5UpyRRTk1i4wu2MGuLOpqO4ElaqMp0BNcKC9qajuCJrzzQ+EItVE07uw9N4ZKg6Qiu9Tt8m+kInmyptXe/75hWZjqCa1t31X+1ii3W7bb3szYzo9R0BE/Cjs90BNeO7rXZdARP/m9Dd9MRXPu6up3pCJ6kd7D3eF9Rbe85jiRVW3yekJFcaTqCa3urQqYjeFJdZe9+/1VRB9MRXAmX29uPgEOf33SA/e688075fD5dd9110XmVlZWaMmWKOnTooDZt2mj8+PEqLCw0FxIAAAAAAAAwzYnzhHq1iI7Uf/3rX3rooYc0ePDgOvOvv/56vfLKK3ruuee0fPlybd26VePGjTOUEgAAAAAAAEBrZbwjtbS0VBdeeKEefvhhtWv338t0iouLtXDhQs2ZM0cnn3yycnJy9Oijj+q9997T+++/bzAxAAAAAAAAYBAVqUYY70idMmWKzjzzTI0ZM6bO/Pz8fNXU1NSZP2DAAPXo0UMrVqxosL2qqiqVlJTUmQAAAAAAAADAC6N3dHnmmWe0cuVK/etf/zrguYKCAiUmJqpt27Z15mdlZamgoKDBNmfPnq3bb7+9uaMCAAAAAAAALYLP2TfFq23Uz1hF6ubNm3XttdfqySefVFJSUrO1O336dBUXF0enzZvtvqMqAAAAAAAAAPOMVaTm5+dr+/btOuaYY6LzwuGw3n77bd1///16/fXXVV1draKiojpVqYWFhcrOzm6w3VAopFAoFM/oAAAAAAAAgDnxHMuUitQGGetIPeWUU/Tpp5/WmTdp0iQNGDBAN910k7p3765gMKilS5dq/PjxkqTVq1dr06ZNys3NNREZAAAAAAAAQCtlrCM1LS1NRx55ZJ15qamp6tChQ3T+ZZddpry8PLVv317p6emaNm2acnNzNXLkyJjfr2//rUpIta9StaI2aDqCJ6M6fmU6gmubd7U1HcGTYLuw6QiuZaaVmo7giT/b3p/vthalm47gSUVJ8w0Vc7CltN9jOoJroVCN6QietEupMB3BtT3lyaYjeLK3xN78kU4+0xE86dRhr+kIriUH7T7mVIcDpiO4ZvdeL7VNsvd4v7morekIriUm2Pu9RJJCSfYecxzHzr9aW3MfbD7Hkc+Jz3fPeLV7KDB6s6nGzJ07V36/X+PHj1dVVZXGjh2rBx54wHQsAAAAAAAAAK1Mi+pIfeutt+o8TkpK0vz58zV//nwzgQAAAAAAAICWhjFSjfCbDgAAAAAAAAAALV2LqkgFAAAAAAAA8P18zr4pXm2jflSkAgAAAAAAAEAjqEgFAAAAAAAAbMIYqUZQkQoAAAAAAAAAjWg1FalfF2UoUJ1kOkbMsjL2mo7gyXs7+5iO4FpyqMZ0BE8ykitNR3CtsCTNdARPkhPt3XeGZG81HcGTf9d0Nx3BtaPa2rvt91aHTEfwpDZi7+/Kx2R/bTqCJ++U9TMdwbV2SRWmI3jy1Y4OpiO4FkiPmI7gydaN9m77E4d8YTqCJ++ss/eYM7zXBtMRXAsFak1H8GTFpl6mI7h2fM+1piO4UlVao49Nh7AAY6SaYe83BwAAAAAAAAA4SFpNRSoAAAAAAABwSGCMVCOoSAUAAAAAAACARlCRCgAAAAAAAFiEMVLNoCIVAAAAAAAAABpBRSoAAAAAAABgE8ZINYKKVAAAAAAAAABoBBWpAAAAAAAAgGUYy/TgazUdqZnppUpIrTEdI2a90nabjuDJhr3tTUdwzWf5EWl3ebLpCK71aLfHdARPzsz61HQE15bt6m86gic+n+kE7r1b2Md0BNdqwwHTETxJT6o0HcG1/+zsbDqCJ8HEWtMRXGsTrDIdwZMBWdtNR3Bt1bYs0xE86dXH3m2/qyrVdARP2rctNR3BtU1725mO4NquvXbvN4FAxHQE11bvtfN4WVNWbToC0KBW05EKAAAAAAAAHBIcZ98Ur7ZRL8ZIBQAAAAAAAIBGUJEKAAAAAAAAWMTnxG+MVMtHOowrKlIBAAAAAAAAoBFUpAIAAAAAAAA2cb6Z4tU26kVFKgAAAAAAAAA0gopUAAAAAAAAwCK+yL4pXm2jfq2mIzUlWKNg0Gc6Rsz8ltdTD++40XQE17ZUtDUdwZOIY9/+vl95baLpCJ58VdHJdATXaiMB0xE8cSw+ZPZO3206gmuf78wyHcGT1GC16QiuVdXafSq3pybFdIRWq8zmz1qLz3Ek6fCM7aYjuFZck2w6gifHZa8zHcG1z4o7m47g2uBeW01H8GR3tb2fVZ/vsPMcLVxeZToC0CC7z74BAAAAAACA1oYxUo1gjFQAAAAAAAAAaAQVqQAAAAAAAIBFfM6+KV5to35UpAIAAAAAAABAI6hIBQAAAAAAAGziOPG7267Nd/GNMypSAQAAAAAAAKARVKQCAAAAAAAAFmGMVDOoSAUAAAAAAACARrSaitTasF8KB0zHiFn7xDLTETzZXpVmOoJrnZOKTUfw5J2CvqYjuHZE+wLTETx5Y3N/0xFcS0uqMh3Bk+N6fWU6gmsR+UxHcK172yLTETw5tv060xFce3XrkaYjeDKoq73H+00l7UxH8OS4bHv3e9ttKW9rOoJrnZJKTUfw5J+FfUxHcK1f252mI7i2syrVdARPEv1h0xFcs/XcvjZsZ+6DzvlmilfbqBcVqQAAAAAAAADQiFZTkQoAAAAAAAAcChgj1QwqUgEAAAAAAACgEVSkAgAAAAAAADZxnH1TvNpGvahIBQAAAAAAAIBG0JEKAAAAAAAAWGT/GKnxmtyYP3++evXqpaSkJI0YMUIffvhhg8s+9thj8vl8daakpKTo8zU1Nbrpppt01FFHKTU1VV26dNGECRO0detWd+GaCR2pAAAAAAAAAFxbvHix8vLyNGPGDK1cuVJDhgzR2LFjtX379gZfk56erm3btkWnjRs3Rp8rLy/XypUrdcstt2jlypV64YUXtHr1ap199tkHY3UaxBipAAAAAAAAgE2cb6Z4tR2jOXPmaPLkyZo0aZIkacGCBXr11Ve1aNEi3XzzzfW+xufzKTs7u97nMjIy9MYbb9SZd//992v48OHatGmTevToEXvIZtBqOlKrIwFFIgHTMWK2em+W6QieHJlutuTai+c+P8Z0BE9G91lnOoJra4o7mY7gycnd15iO4NpXpR1NR/BkT3Wy6QiuVUfs/UguqrR3u0vSI58eazqCayf3W206gifJgRrTEVxrk1BlOoIna/Zmmo7gWlbyXtMRPEkPVpqO4FpBRZrpCJ4M67TZdATXkgPVpiO49llxZ9MRPBndwd7vVTsrU01HcKW2xu7P2ENJSUlJncehUEihUOiA5aqrq5Wfn6/p06dH5/n9fo0ZM0YrVqxosP3S0lL17NlTkUhExxxzjGbNmqUjjjiiweWLi4vl8/nUtm3b2FemmXBpPwAAAAAAAGCRgzFGavfu3ZWRkRGdZs+eXW+WnTt3KhwOKyurbjFgVlaWCgoK6n1N//79tWjRIv3lL3/RE088oUgkolGjRunrr7+ud/nKykrddNNNuuCCC5Senu5+w3lkb/kLAAAAAAAAgLjYvHlznU7L+qpR3crNzVVubm708ahRozRw4EA99NBDuuOOO+osW1NTo5/+9KdyHEcPPvhgs2Vwg45UAAAAAAAAwCYRZ98Ur7a172ZQTan+7NixowKBgAoLC+vMLywsbHAM1O8KBoM6+uijtXbt2jrz93eibty4UW+++abRalSJS/sBAAAAAAAAuJSYmKicnBwtXbo0Oi8SiWjp0qV1qk6/Tzgc1qeffqrOnf87rvL+TtQ1a9boH//4hzp06NDs2WNFRSoAAAAAAABgE+ebKV5txygvL08TJ07UsGHDNHz4cM2bN09lZWWaNGmSJGnChAnq2rVrdJzVmTNnauTIkerXr5+Kiop0zz33aOPGjbr88ssl7etEPe+887Ry5Ur99a9/VTgcjo632r59eyUmJjbPusaIjlQAAAAAAAAArp1//vnasWOHbr31VhUUFGjo0KFasmRJ9AZUmzZtkt//3wvj9+zZo8mTJ6ugoEDt2rVTTk6O3nvvPQ0aNEiStGXLFr388suSpKFDh9Z5r2XLlunEE088KOv1XXSkAgAAAAAAABbxSfLFqSLV5/J1U6dO1dSpU+t97q233qrzeO7cuZo7d26DbfXq1UuOE6+SW/foSG3h2iaWm47gSVXE3l1sSPevTUdotX7QcaPpCJ60SagyHcG1jXvamY7gyak9vjAdwbXd1ammI7hWURs0HcGTI7puMx3BtS6hYtMRPMkv6mE6gmsJvrDpCJ5s2ZthOoJrY7t9bjqCJ9sq7d32o9uvMx3BkxonYDqCa1uq2pqO4NpJnVabjuBJebj57lJ+sI3uaOffbGVSjZaZDgE0wN5eLgAAAAAAAKA1cpx9U7zaRr38jS8CAAAAAAAAAK0bFakAAAAAAACARXxOHMdIpSC1QVSkAgAAAAAAAEAjqEgFAAAAAAAAbOJ8M8WrbdSLilQAAAAAAAAAaAQVqQAAAAAAAIBFfI4jnxOf0tF4tXsooCIVAAAAAAAAABrRaipS24YqFAyFTceIWdtghekInhTVpJiO0Gr5LR7UZEd1G9MRPPm8JNt0BNeGZG0xHcGTdwv7mI7gWtc2xaYjuBYK1JqO4MkZmZ+ajuDapqoOpiN4sqUk3XQE1zqllpmO4EnntBLTEVz75w57j/WSlJWy13QE11aW9DAdwZMBbQpMR3Bt5c7upiO4tiHZ7s+qXqm7TEdwrXvSbtMRXHH8dp9bHjSRb6Z4tY16UZEKAAAAAAAAAI1oNRWpAAAAAAAAwKGAMVLNoCIVAAAAAAAAABpBRSoAAAAAAABgE+ebKV5to15UpAIAAAAAAABAI6hIBQAAAAAAAGziOPumeLWNelGRCgAAAAAAAACNaDUVqYmBsIKBsOkYMQv5a01H8KTCl2g6gmsRx2c6gid9U3aYjuDaG4UDTEfwZEj7LaYjuFZQmW46gifndvvEdATX+oUKTUdwbW1VlukInry1u7/pCK7tqGxjOoIn3dOLTUdw7dys/zMdwZN/7B5kOoJrJ3b40nQET7ol7jIdwbX8st6mI3jyUXE30xFcO6bjZtMRXOsQLDMdwZOAL2I6gmtPrfuB6QiuhMurJC01HaPF8zn7pni1jfpRkQoAAAAAAAAAjWg1FakAAAAAAADAIYExUo2gIhUAAAAAAAAAGkFFKgAAAAAAAGARX2TfFK+2UT8qUgEAAAAAAACgEVSkAgAAAAAAADZhjFQjqEgFAAAAAAAAgEZQkQoAAAAAAADYxPlmilfbqFer6UjtnrxHoZSg6Rgx216VZjqCJ5mhvaYjuNYvZbvpCJ5URuzb3/c7MXON6QieDEv9ynQE197QkaYjePJZaWfTEVwL+sKmI7jWLqHMdARPBqVtMx3BtT1JKaYjeLKmNNN0BNf+WXyY6QiebChpbzqCa6e2/4/pCJ5srO5oOoJrEcdnOoIn2Un2fjc5MnWL6Qiu/XnrMaYjeDKwbYHpCK4Ny95sOoIr1aXV+sx0CKABRi/tv+222+Tz+epMAwYMiD5fWVmpKVOmqEOHDmrTpo3Gjx+vwsJCg4kBAAAAAAAAs3yOE9cJ9TM+RuoRRxyhbdu2Rad33303+tz111+vV155Rc8995yWL1+urVu3aty4cQbTAgAAAAAAAGiNjF/an5CQoOzs7APmFxcXa+HChXrqqad08sknS5IeffRRDRw4UO+//75GjhxZb3tVVVWqqqqKPi4pKYlPcAAAAAAAAMAEx9k3xatt1Mt4ReqaNWvUpUsX9enTRxdeeKE2bdokScrPz1dNTY3GjBkTXXbAgAHq0aOHVqxY0WB7s2fPVkZGRnTq3r173NcBAAAAAAAAwKHNaEfqiBEj9Nhjj2nJkiV68MEHtX79eh133HHau3evCgoKlJiYqLZt29Z5TVZWlgoKGh7sefr06SouLo5OmzfbObgyAAAAAAAAUC9HUiROEwWpDTJ6af/pp58e/f/BgwdrxIgR6tmzp5599lklJye7ajMUCikUCjVXRAAAAAAAAAAwf2n/t7Vt21aHH3641q5dq+zsbFVXV6uoqKjOMoWFhfWOqQoAAAAAAAC0Bj7HieuE+hm/2dS3lZaWat26dbr44ouVk5OjYDCopUuXavz48ZKk1atXa9OmTcrNzY257T3VKUqsTmzuyHFXVmtf5m/brjTTEVz7vMTuDvs+bXaajuDa7uoU0xE86ZxYZDqCa9sr7f2blaQh6V+bjuDav4t7mo7gWoI/bDqCJ9vKM0xHcC01odp0BE+ykvaajuBal6Qi0xE88bePmI7g2qfl3APBlMIqu88T2ieWm47g2rrKTNMRXBubtcp0BE8+K+1iOoJre6rdXelrWk11i+qqAuowunf+4he/0I9+9CP17NlTW7du1YwZMxQIBHTBBRcoIyNDl112mfLy8tS+fXulp6dr2rRpys3N1ciRI03GBgAAAAAAAMxxJMWrcpSC1AYZ7Uj9+uuvdcEFF2jXrl3q1KmTRo8erffff1+dOnWSJM2dO1d+v1/jx49XVVWVxo4dqwceeMBkZAAAAAAAAACtkNGO1GeeeeZ7n09KStL8+fM1f/78g5QIAAAAAAAAaOEcJ44VqZSkNqRF3WwKAAAAAAAAAFoiRvAFAAAAAAAAbBKR5Itj26gXFakAAAAAAAAA0AgqUgEAAAAAAACL+BxHvjiNZRqvdg8FVKQCAAAAAAAAQCNaTUVqQWW6goFE0zFiltNuk+kInrQJVJqO4FppcpLpCJ7kpKw3HcG12WtPNx3Bk9Ft15qO4Fr/NoWmI3jycUk30xFcu6rzMtMRXHtg28mmI3gyJvML0xFc21zZ3nQET7JDxaYjuNY5WGQ6gic7qtNMR3CtKmL3V5h2wXLTEVxbU9TJdARPBrTbbjqCayPSvzIdwbU3dw8wHcGTn2d9YDqCa0XhFNMRXKkordVrpkPYwHH2TfFqG/WiIhUAAAAAAAAAGmH3z7kAAAAAAABAa0NFqhFUpAIAAAAAAABAI6hIBQAAAAAAAGxCRaoRVKQCAAAAAAAAQCOoSAUAAAAAAABsEpHki2PbqBcVqQAAAAAAAADQiFZTkTqx83tKSQuYjhGzNVVZpiN4EvSFTUdotXaH25iO4NqkXitMR/Cka3C36Qit1sBOW0xHcM3mv9l+qTtMR/Bkd22q6QiuJQeqTUfwpMax79xsv7Dl9QgJFp+jHZa83XQET7on7jIdwb0upgN4c2rap6YjuBaQveMV/rD7atMRPHmnoo/pCK6tr+pkOoIrVVU1piNYwec48sVpLNN4tXsosPsMEAAAAAAAAAAOglZTkQoAAAAAAAAcEhxn3xSvtlEvKlIBAAAAAAAAoBFUpAIAAAAAAAA2iTiSL06VoxEqUhtCRSoAAAAAAAAANIKOVAAAAAAAAMAm+8dIjdfkwvz589WrVy8lJSVpxIgR+vDDDxtc9rHHHpPP56szJSUlfWcVHd16663q3LmzkpOTNWbMGK1Zs8ZVtuZCRyoAAAAAAAAA1xYvXqy8vDzNmDFDK1eu1JAhQzR27Fht3769wdekp6dr27Zt0Wnjxo11nr/77rv1+9//XgsWLNAHH3yg1NRUjR07VpWVlfFenQbRkQoAAAAAAABYJZ7VqPsqUktKSupMVVVVDaaZM2eOJk+erEmTJmnQoEFasGCBUlJStGjRogZf4/P5lJ2dHZ2ysrL+u3aOo3nz5ul///d/dc4552jw4MF6/PHHtXXrVr300kvNtRFj1mpuNrUjnKbkWvtWtyoSNB3Bky6hItMRXPtB8lemI3jybll/0xFcq3ECpiN4MiC01XQE1/omFpqO4Mm/y/uYjuCazfv98NR1piN4sjvcxnQE17ZWtzMdwZOOwb2mI7iW7q8wHcGTI1O3mI7gmu3nxx+X9zAdwbUd1WmmI3jyXvlhpiO4dkXb/5iO4NqKyg6mI3hynMXfC4O+sOkIrlTU1pqOgG907969zuMZM2botttuO2C56upq5efna/r06dF5fr9fY8aM0YoVKxpsv7S0VD179lQkEtExxxyjWbNm6YgjjpAkrV+/XgUFBRozZkx0+YyMDI0YMUIrVqzQz372M49r5459PYsAAAAAAABAa+ZhLNMmtS1p8+bNSk9Pj84OhUL1Lr5z506Fw+E6FaWSlJWVpS+++KLe1/Tv31+LFi3S4MGDVVxcrN/+9rcaNWqUPvvsM3Xr1k0FBQXRNr7b5v7nTKAjFQAAAAAAAEAd6enpdTpSm1Nubq5yc3Ojj0eNGqWBAwfqoYce0h133BGX92wOjJEKAAAAAAAA2CTixHeKQceOHRUIBFRYWHeouMLCQmVnZzepjWAwqKOPPlpr166VpOjrvLQZD3SkAgAAAAAAAHAlMTFROTk5Wrp0aXReJBLR0qVL61Sdfp9wOKxPP/1UnTt3liT17t1b2dnZddosKSnRBx980OQ244FL+wEAAAAAAACbOJF9U7zajlFeXp4mTpyoYcOGafjw4Zo3b57Kyso0adIkSdKECRPUtWtXzZ49W5I0c+ZMjRw5Uv369VNRUZHuuecebdy4UZdffrkkyefz6brrrtOvf/1rHXbYYerdu7duueUWdenSReeee26zrWqs6EgFAAAAAAAA4Nr555+vHTt26NZbb1VBQYGGDh2qJUuWRG8WtWnTJvn9/70wfs+ePZo8ebIKCgrUrl075eTk6L333tOgQYOiy/zyl79UWVmZrrjiChUVFWn06NFasmSJkpKSDvr67UdHKgAAAAAAAGATx9k3xattF6ZOnaqpU6fW+9xbb71V5/HcuXM1d+7c723P5/Np5syZmjlzpqs88dBqOlKzAsVKSQiYjhGzGse+zN+W5q8wHcG1RduPNx3Bkx91+Mh0BNc+Lu9hOoInu8NtTEdw7auqTNMRPAn5a0xHcK2Nr9J0BNd+ENpuOoInC4vsPeZc0S7fdARP3rD4eF8WCZmO4MkRoa9NR3Dto8qepiN4MqHth6YjuPZ6WX/TETzplLDXdATXbimw97tJ11CR6Qie/HnXMNMRXBuZvs50BFcqIz7TEYAGtZqOVAAAAAAAAOCQEHEkxakiNRKndg8B/sYXAQAAAAAAAIDWjYpUAAAAAAAAwCYtcIzU1oCKVAAAAAAAAABoBBWpAAAAAAAAgE0cxbEiNT7NHgqoSAUAAAAAAACARlCRCgAAAAAAANiEMVKNoCIVAAAAAAAAABrRaipSv65tr+Qa+1a3U0KJ6QieVDpB0xFc+1GHj0xHaLWGpX5lOkKrNabNKtMRPCmKJJmO4NqKssNMR3Dt4+oOpiN4cnTKBtMRXHunorPpCJ58XtHFdATXhqeuMx3Bk08ru5uO4NpRSZtNR/DkA4u3/e7aNqYjeLKuMtN0BNfGZHxmOoJrvYK7TUfw5NPErqYjuHZW6temI7hSooiuNR3CBpGIpEgc20Z9qEgFAAAAAAAAgEbYV6IJAAAAAAAAtGaMkWoEFakAAAAAAAAA0AgqUgEAAAAAAACbUJFqBBWpAAAAAAAAANAIKlIBAAAAAAAAm0QcSXGqHI1QkdoQKlIBAAAAAAAAoBGtpiI1oIgCipiOEbO1ldmmI7RaGQnlpiN4MqXtZtMRXHu5LMV0BE8+LOtrOoJrqWmfmY7gSUFthukIrh2ZbO/fbLUTMB3Bk72RZNMRXNtY1dF0BE8uaPuh6QiuPV003HQET4K+sOkIrpVHQqYjeNItcZfpCK4F/bWmI3hySfv3TEdw7Y4tZ5qO4Fr/NoWmI3hybOqXpiO4tryig+kIrpRXhCVtMx2jxXOciBwnPv1c8Wr3UEBFKgAAAAAAAAA0otVUpAIAAAAAAACHBMeJ31imDmOkNoSKVAAAAAAAAABoBBWpAAAAAAAAgE0cRxIVqQcbFakAAAAAAAAA0AgqUgEAAAAAAACbRCKSLxKftp04tXsIoCIVAAAAAAAAABpBRSoAAAAAAABgE8ZINaLVdKRWREJyIvatbv+kbaYjeHJCsr35/z97dx4fRX3/cfy9m/sOgRxyn4KogAY5FMUjcli1eFRUKojWG1FjrfJrBdQqeCFVEawKihWvelIraimHB3hg8ULRWhAEEoiQ+96d3x+ULZGEZGez+eYLryePeTzY2dnvvncyOzv73c98Z6fllew/1tq74zsyutR0hJB8WdHJdATXvqk6xHSEkGyqams6gmunJH9lOoJr31S3Nx0hJFEen+kIrp2cuM50hJB8U51pOoJrxbWxpiOE5Ib0ZaYjuPZpld37nP9Up5uO4Frf2C2mI4QkyWvv/n5u57+ZjuDaX4oPMx3hoJUVWWQ6gitlkZZ/GccBzb6eRQAAAAAAAOAg5vj9csI0RqrDGKkNYoxUAAAAAAAAAGgEFakAAAAAAACATRgj1QgqUgEAAAAAAACgEVSkAgAAAAAAADbxO5KHitSWRkUqAAAAAAAAADSCilQAAAAAAADAJo4jyR/GtlGfg6YjNc5bpTivz3SMoNU4EaYjhKTIb++bb2NNG9MRQhLrrTEdwbWlJYebjhCSztE/mY7gWtvIUtMRQhLvrTIdwbUoj32fUXv0is4zHSEkbSPKTEdwrX1EtekIIbF5uz+nfbHpCCHZVGs6gXtLi/qajhCSzGh7t52jowtMRwhJrMfeEzLX18SYjuCazcdnkrSxJt10BNeSfRWmI7hSXuOTtNl0DKBeB01HKgAAAAAAAHAgcPyOnDCNkepQkdoge3+SAwAAAAAAAIAWQkUqAAAAAAAAYBPHr/CNkRqmdg8AVKQCAAAAAAAAQCOoSAUAAAAAAAAswhipZlCRCgAAAAAAAACNoCIVAAAAAAAAsAljpBpxwHek7ilHriytNZzEnegIn+kIISmtsffNV1Zj97r3ee1d91WlNaYjhKQi2s79jSSVW77PqfDbu+7Loux9z1b67d5uYiLsXfclFmeXpFKfvfmLq+3NLkkltfbmry6tNh0hJFXR9h7nlETau91IUo3HdAL3yiz+XlVRbe/xmST5LD6RN9Jr5zFaRenu3Jxevn+1qpHCtIpqZe9nVbh5nAN8y/zxxx/VqVMn0zEAAAAAAADQRJs3b1bHjh1Nx2h1Kisr1a1bN+Xl5YX1ebKysrRhwwbFxsaG9Xlsc8B3pPr9fm3dulVJSUnyeJr/J8ji4mJ16tRJmzdvVnJycrO3D6B58Z4F7MJ7FrAL71nALrxn0Ro5jqOSkhK1b99eXq+9FcHhVFlZqerq8J6hER0dTSdqPQ74U/u9Xm+L/IKRnJzMBw9gEd6zgF14zwJ24T0L2IX3LFqblJQU0xFatdjYWDo5DaFrHwAAAAAAAAAaQUcqAAAAAAAAADSCjtQQxcTEaNq0aYqJiTEdBUAT8J4F7MJ7FrAL71nALrxnASA4B/zFpgAAAAAAAAAgVFSkAgAAAAAAAEAj6EgFAAAAAAAAgEbQkQoAAAAAAAAAjaAjFQAAAAAAAAAaQUcqAAAAAAAAADSCjtQQzJkzR127dlVsbKwGDx6sjz76yHQkAPWYPn26PB5PnalPnz6mYwHYy8qVK3XGGWeoffv28ng8evXVV+vc7ziOpk6dqkMOOURxcXHKycnRd999ZyYsgEbfsxdffPE+n72jRo0yExaAZsyYoWOOOUZJSUnKyMjQmDFjtH79+jrLVFZW6pprrlHbtm2VmJioc845R/n5+YYSA0DrREeqS88//7xyc3M1bdo0ffrpp+rfv79Gjhyp7du3m44GoB6HH364tm3bFpjee+8905EA7KWsrEz9+/fXnDlz6r3/nnvu0YMPPqh58+bpww8/VEJCgkaOHKnKysoWTgpAavw9K0mjRo2q89n77LPPtmBCAHtbsWKFrrnmGq1evVrvvPOOampqNGLECJWVlQWWueGGG7R48WK9+OKLWrFihbZu3aqzzz7bYGoAaH08juM4pkPYaPDgwTrmmGP08MMPS5L8fr86deqka6+9VrfccovhdAD2Nn36dL366qtau3at6SgAmsDj8eiVV17RmDFjJO2uRm3fvr1uvPFG/fa3v5UkFRUVKTMzU08++aTOP/98g2kB/Pw9K+2uSC0sLNynUhVA67Bjxw5lZGRoxYoVOuGEE1RUVKT09HQtWrRI5557riTpm2++0WGHHaZVq1ZpyJAhhhMDQOtARaoL1dXVWrNmjXJycgLzvF6vcnJytGrVKoPJADTku+++U/v27dW9e3eNGzdOmzZtMh0JQBNt2LBBeXl5dT53U1JSNHjwYD53gVZs+fLlysjIUO/evXXVVVfpp59+Mh0JwH8VFRVJktLS0iRJa9asUU1NTZ3P2j59+qhz58581gLAXuhIdaGgoEA+n0+ZmZl15mdmZiovL89QKgANGTx4sJ588kktWbJEc+fO1YYNG3T88cerpKTEdDQATbDns5XPXcAeo0aN0sKFC7V06VLdfffdWrFihUaPHi2fz2c6GnDQ8/v9uv7663XcccfpiCOOkLT7szY6Olqpqal1luWzFgDqijQdAADCbfTo0YH/9+vXT4MHD1aXLl30wgsv6NJLLzWYDACAA9PeQ24ceeSR6tevn3r06KHly5frlFNOMZgMwDXXXKMvv/ySawYAgAtUpLrQrl07RURE7HMFw/z8fGVlZRlKBaCpUlNTdeihh+rf//636SgAmmDPZyufu4C9unfvrnbt2vHZCxg2adIk/e1vf9OyZcvUsWPHwPysrCxVV1ersLCwzvJ81gJAXXSkuhAdHa3s7GwtXbo0MM/v92vp0qUaOnSowWQAmqK0tFTff/+9DjnkENNRADRBt27dlJWVVedzt7i4WB9++CGfu4AlfvzxR/3000989gKGOI6jSZMm6ZVXXtE///lPdevWrc792dnZioqKqvNZu379em3atInPWgDYC6f2u5Sbm6sJEyZo4MCBGjRokGbPnq2ysjJNnDjRdDQAP/Pb3/5WZ5xxhrp06aKtW7dq2rRpioiI0AUXXGA6GoD/Ki0trVOptmHDBq1du1ZpaWnq3Lmzrr/+ev3xj39Ur1691K1bN916661q3759nauEA2g5+3vPpqWl6bbbbtM555yjrKwsff/99/rd736nnj17auTIkQZTAweva665RosWLdJrr72mpKSkwLinKSkpiouLU0pKii699FLl5uYqLS1NycnJuvbaazV06FANGTLEcHoAaD08juM4pkPY6uGHH9a9996rvLw8DRgwQA8++KAGDx5sOhaAnzn//PO1cuVK/fTTT0pPT9ewYcN05513qkePHqajAfiv5cuX66STTtpn/oQJE/Tkk0/KcRxNmzZNf/7zn1VYWKhhw4bpkUce0aGHHmogLYD9vWfnzp2rMWPG6F//+pcKCwvVvn17jRgxQnfcccc+F40D0DI8Hk+98xcsWKCLL75YklRZWakbb7xRzz77rKqqqjRy5Eg98sgjnNoPAHuhIxUAAAAAAAAAGsEYqQAAAAAAAADQCDpSAQAAAAAAAKARdKQCAAAAAAAAQCPoSAUAAAAAAACARtCRCgAAAAAAAACNoCMVAAAAAAAAABpBRyoAAAAAAAAANIKOVAAAAAAAAABoBB2pAAAATXTxxRdrzJgxxp7/oosu0l133WXs+YO1ZMkSDRgwQH6/33QUAAAAIGR0pAIAAEjyeDz7naZPn64//elPevLJJ43k++yzz/T3v/9dkydPDsw78cQTdf311++z7JNPPqnU1NSWC9eAUaNGKSoqSs8884zpKAAAAEDIIk0HAAAAaA22bdsW+P/zzz+vqVOnav369YF5iYmJSkxMNBFNkvTQQw/pV7/6ldEMe3McRz6fT5GR+z+cvPjii/Xggw/qoosuaqFkAAAAQHhQkQoAACApKysrMKWkpMjj8dSZl5iYuM+p/SeeeKKuvfZaXX/99WrTpo0yMzP12GOPqaysTBMnTlRSUpJ69uypN998s85zffnllxo9erQSExOVmZmpiy66SAUFBQ1m8/l8+utf/6ozzjjD9eubO3euevTooejoaPXu3VtPP/104L6NGzfK4/Fo7dq1gXmFhYXyeDxavny5JGn58uXyeDx68803lZ2drZiYGL333nv67LPPdNJJJykpKUnJycnKzs7WJ598EmjnjDPO0CeffKLvv//edXYAAACgNaAjFQAAIARPPfWU2rVrp48++kjXXnutrrrqKv3qV7/Sscceq08//VQjRozQRRddpPLyckm7OyhPPvlkHXXUUfrkk0+0ZMkS5efn67zzzmvwOT7//HMVFRVp4MCBrjK+8soruu6663TjjTfqyy+/1BVXXKGJEydq2bJlQbd1yy23aObMmfr666/Vr18/jRs3Th07dtTHH3+sNWvW6JZbblFUVFRg+c6dOyszM1Pvvvuuq+wAAABAa8Gp/QAAACHo37+//vCHP0iSpkyZopkzZ6pdu3a67LLLJElTp07V3Llz9fnnn2vIkCF6+OGHddRRR9W5aNT8+fPVqVMnffvttzr00EP3eY4ffvhBERERysjI2Oe+Rx55RI8//nidebW1tYqNjQ3cvu+++3TxxRfr6quvliTl5uZq9erVuu+++3TSSScF9Xpvv/12nXrqqYHbmzZt0k033aQ+ffpIknr16rXPY9q3b68ffvghqOcBAAAAWhsqUgEAAELQr1+/wP8jIiLUtm1bHXnkkYF5mZmZkqTt27dL2n3RqGXLlgXGXE1MTAx0QjZ0+ntFRYViYmLk8Xj2uW/cuHFau3Ztnen222+vs8zXX3+t4447rs684447Tl9//XXQr/fnVbG5ubn6zW9+o5ycHM2cObPe1xAXFxeoyAUAAABsRUUqAABACPY+jV2SPB5PnXl7Oj/9fr8kqbS0VGeccYbuvvvufdo65JBD6n2Odu3aqby8XNXV1YqOjq5zX0pKinr27FlnXn2Vq/vj9e7+bd1xnMC8mpqaepdNSEioc3v69Om68MIL9cYbb+jNN9/UtGnT9Nxzz+mss84KLLNz506lp6cHlQkAAABobahIBQAAaEFHH320vvrqK3Xt2lU9e/asM/28k3KPAQMGSJLWrVvn6jkPO+wwvf/++3Xmvf/+++rbt68kBTo5t23bFrh/7wtPNebQQw/VDTfcoLfffltnn322FixYELivsrJS33//vY466ihX2QEAAIDWgo5UAACAFnTNNddo586duuCCC/Txxx/r+++/11tvvaWJEyfK5/PV+5j09HQdffTReu+991w950033aQnn3xSc+fO1XfffadZs2bp5Zdf1m9/+1tJu0+9HzJkSOAiUitWrAiM+7o/FRUVmjRpkpYvX64ffvhB77//vj7++GMddthhgWVWr16tmJgYDR061FV2AAAAoLWgIxUAAKAFtW/fXu+//758Pp9GjBihI488Utdff71SU1MDp9jX5ze/+Y2eeeYZV885ZswY/elPf9J9992nww8/XI8++qgWLFigE088MbDM/PnzVVtbq+zsbF1//fX64x//2Gi7ERER+umnnzR+/HgdeuihOu+88zR69GjddtttgWWeffZZjRs3TvHx8a6yAwAAAK2Fx9l7MCwAAAC0ShUVFerdu7eef/55a6o7CwoK1Lt3b33yySfq1q2b6TgAAABASKhIBQAAsEBcXJwWLlyogoIC01GabOPGjXrkkUfoRAUAAMABgYpUAAAAAAAAAGgEFakAAAAAAAAA0Ag6UgEAAAAAAACgEXSkAgAAAAAAAEAj6EgFAAAAAAAAgEbQkQoAAAAAAAAAjaAjFQAAAAAAAAAaQUcqAAAAAAAAADSCjlQAAAAAAAAAaAQdqQAAAAAAAADQCDpSAQAAAAAAAKARdKQCAAAAAAAAQCPoSAUAAAAAAACARtCRCgAAAAAAAACNoCMVAAAAAAAAABpBRyoAAMB/TZ8+XR6Pp9na27hxozwej5588slmazMUTz75pDwejzZu3NhsbTb3OmvOHF27dtXFF1/c4llMPS8AAADCi45UAAAOIHs6yhqaVq9ebTpiyLZu3arp06dr7dq1RnMsXrxYw4cPV0ZGhuLj49W9e3edd955WrJkidFcoerXr586d+4sx3EaXOa4445TZmamamtrWzBZ6/LBBx9o+vTpKiwsNB0FAAAALSTSdAAAAND8br/9dnXr1m2f+T179jSQpnlt3bpVt912m7p27aoBAwYYyXDffffppptu0vDhwzVlyhTFx8fr3//+t/7xj3/oueee06hRoyRJXbp0UUVFhaKioozkdGPcuHG65ZZb9O677+qEE07Y5/6NGzdq1apVmjRpkiIjI/WHP/xBt9xyi4GkjVu/fr283vDUDXzwwQe67bbbdPHFFys1NbXFnhcAAADm0JEKAMABaPTo0Ro4cKDRDGVlZUpISDCaIRxqa2t1xx136NRTT9Xbb7+9z/3bt28P/N/j8Sg2NrYl44Xswgsv1JQpU7Ro0aJ6O1KfffZZOY6jcePGSZIiIyMVGdk6DyljYmIOqucFAABAePFTOQAAB6E9Y3fed999+vOf/6wePXooJiZGxxxzjD7++ON9lv/mm2903nnnKT09XXFxcerdu7d+//vfB+7fMz7lunXrdOGFF6pNmzYaNmyYFixYII/Ho3/961/7tHnXXXcpIiJCW7ZskSSdeOKJOuKII7RmzRode+yxiouLU7du3TRv3rzAY5YvX65jjjlGkjRx4sTAkAV7j0H64YcfatSoUUpJSVF8fLyGDx+u999/f5/nf++993TMMccoNjZWPXr00KOPPtqkdVdQUKDi4mIdd9xx9d6fkZER+H9DY6S++OKL6tu3r2JjY3XEEUfolVde0cUXX6yuXbvu89im/I0+//xzXXzxxerevbtiY2OVlZWlSy65RD/99FOTXtPeOnXqpBNOOEF//etfVVNTs8/9ixYtUo8ePTR48GBJ9Y9N+s4772jYsGFKTU1VYmKievfurf/7v/8L3N/QWK3Lly+Xx+PR8uXLA/Peffdd/epXv1Lnzp0VExOjTp066YYbblBFRUWjr+XnY5Xub9iLPVmasi6nT5+um266SZLUrVu3fdqob4zU//znP/rVr36ltLQ0xcfHa8iQIXrjjTfqff0vvPCC7rzzTnXs2FGxsbE65ZRT9O9//7vR1wsAAIDwap3lAwAAICRFRUUqKCioM8/j8aht27Z15i1atEglJSW64oor5PF4dM899+jss8/Wf/7zn8Dp6J9//rmOP/54RUVF6fLLL1fXrl31/fffa/HixbrzzjvrtPerX/1KvXr10l133SXHcXTuuefqmmuu0TPPPKOjjjqqzrLPPPOMTjzxRHXo0CEwb9euXTrttNN03nnn6YILLtALL7ygq666StHR0brkkkt02GGH6fbbb9fUqVN1+eWX6/jjj5ckHXvssZKkf/7znxo9erSys7M1bdo0eb1eLViwQCeffLLeffddDRo0SJL0xRdfaMSIEUpPT9f06dNVW1uradOmKTMzs9F1m5GRobi4OC1evFjXXnut0tLSmvInCXjjjTc0duxYHXnkkZoxY4Z27dqlSy+9tM562FtT/kbvvPOO/vOf/2jixInKysrSV199pT//+c/66quvtHr16qAvBjVu3Dhdfvnleuutt3T66acH5n/xxRf68ssvNXXq1AYf+9VXX+n0009Xv379dPvttysmJkb//ve/6+3MbooXX3xR5eXluuqqq9S2bVt99NFHeuihh/Tjjz/qxRdfDKqtp59+ep95f/jDH7R9+3YlJiZKatq6PPvss/Xtt9/q2Wef1QMPPKB27dpJktLT0+t93vz8fB177LEqLy/X5MmT1bZtWz311FM688wz9de//lVnnXVWneVnzpwpr9er3/72tyoqKtI999yjcePG6cMPPwzq9QIAAKCZOQAA4ICxYMECR1K9U0xMTGC5DRs2OJKctm3bOjt37gzMf+211xxJzuLFiwPzTjjhBCcpKcn54Ycf6jyX3+8P/H/atGmOJOeCCy7YJ9MFF1zgtG/f3vH5fIF5n376qSPJWbBgQWDe8OHDHUnO/fffH5hXVVXlDBgwwMnIyHCqq6sdx3Gcjz/+eJ/H7snTq1cvZ+TIkXWylZeXO926dXNOPfXUwLwxY8Y4sbGxdV7TunXrnIiICKcph0dTp051JDkJCQnO6NGjnTvvvNNZs2bNPsvtWc97Zz3yyCOdjh07OiUlJYF5y5cvdyQ5Xbp02eexTfkblZeX7/Pczz77rCPJWblyZWDenu1jw4YN+319O3fudGJiYvb5e95yyy2OJGf9+vWBeXv+9ns88MADjiRnx44dDbbfUI5ly5Y5kpxly5bt97XNmDHD8Xg8df5+P8/hOI7TpUsXZ8KECQ3muOeeexxJzsKFC/f7fPWty3vvvbfBdfnz573++usdSc67774bmFdSUuJ069bN6dq1a+C9sef1H3bYYU5VVVVg2T/96U+OJOeLL75o8LUAAAAg/Di1HwCAA9CcOXP0zjvv1JnefPPNfZYbO3as2rRpE7i9p8LzP//5jyRpx44dWrlypS655BJ17ty5zmPrq3K88sor95k3fvx4bd26VcuWLQvMe+aZZxQXF6dzzjmnzrKRkZG64oorArejo6N1xRVXaPv27VqzZs1+X/PatWv13Xff6cILL9RPP/2kgoICFRQUqKysTKeccopWrlwpv98vn8+nt956S2PGjKnzmg477DCNHDlyv8+xx2233aZFixbpqKOO0ltvvaXf//73ys7O1tFHH62vv/66wcdt3bpVX3zxhcaPHx+ogJSk4cOH68gjj6z3MY39jSQpLi4u8P/KykoVFBRoyJAhkqRPP/20Sa9pb23atNFpp52m119/XWVlZZIkx3H03HPPaeDAgTr00EMbfOyeCy+99tpr8vv9QT/3z+392srKylRQUKBjjz1WjuPUO2REUy1btkxTpkzRtddeq4suuqje52uOdSlJf//73zVo0CANGzYsMC8xMVGXX365Nm7cqHXr1tVZfuLEiYqOjg7cru9vDgAAgJZHRyoAAAegQYMGKScnp8500kkn7bPczztH93TY7dq1S9L/Om6OOOKIJj1vt27d9pl36qmn6pBDDtEzzzwjSfL7/Xr22Wf1y1/+UklJSXWWbd++/T4XqNrTaffz8TR/7rvvvpMkTZgwQenp6XWmxx9/XFVVVSoqKtKOHTtUUVGhXr167dNG7969m/Q6JemCCy7Qu+++q127duntt9/WhRdeqH/9618644wzVFlZWe9jfvjhB0lSz54997mvvnlS438jSdq5c6euu+46ZWZmKi4uTunp6YG/RVFRUZNf097GjRunsrIyvfbaa5J2X6V+48aNgYtMNWTs2LE67rjj9Jvf/EaZmZk6//zz9cILL7juVN20aZMuvvhipaWlKTExUenp6Ro+fLgk96/txx9/DOScNWtWnfvCsS5/+OGHeretww47LHD/3pryNwcAAEDLY4xUAAAOYhEREfXOdxzHVXt7V/Pt/RwXXnihHnvsMT3yyCN6//33tXXrVv3617929RwN2dNRd++992rAgAH1LpOYmKiqqqpmfd7k5GSdeuqpOvXUUxUVFaWnnnpKH374YaCzL1RN+Rudd955+uCDD3TTTTdpwIABSkxMlN/v16hRo1x3YJ5++ulKSUnRokWLdOGFF2rRokWKiIjQ+eefv9/HxcXFaeXKlVq2bJneeOMNLVmyRM8//7xOPvlkvf3224qIiGhwzFafz7fP7VNPPVU7d+7UzTffrD59+ighIUFbtmzRxRdf7Oq1VVdX69xzz1VMTIxeeOEFRUbWPRwOx7oMVnO/LwEAANA86EgFAAAN6t69uyTpyy+/DKmd8ePH6/7779fixYv15ptvKj09vd7T6Ldu3aqysrI6VanffvutJAWuaN9QJ1yPHj0k7e7YzMnJaTBLenq64uLiAhWse1u/fn2TX1N9Bg4cqKeeekrbtm2r9/4uXbpIUr1XYHd7VfZdu3Zp6dKluu222+pcBKq+1xeMmJgYnXvuuVq4cKHy8/P14osv6uSTT1ZWVlajj/V6vTrllFN0yimnaNasWbrrrrv0+9//XsuWLVNOTk6gwrKwsLDO435emfnFF1/o22+/1VNPPaXx48cH5r/zzjuuX9fkyZO1du1arVy5cp+LiwWzLoO5gFeXLl3q3ba++eabwP0AAABo/Ti1HwAANCg9PV0nnHCC5s+fr02bNtW5L5jquH79+qlfv356/PHH9dJLL+n888/fpxJQkmpra/Xoo48GbldXV+vRRx9Venq6srOzJSnQyfrzTrjs7Gz16NFD9913n0pLS/dpe8eOHZJ2V/uNHDlSr776ap3X9PXXX+utt95q9LWUl5dr1apV9d63ZxzahoYIaN++vY444ggtXLiwTsYVK1boiy++aPS567OnevHnf4/Zs2e7am9v48aNU01Nja644grt2LGj0dP6pd2nxv/cngrhPdXAezq9V65cGVjG5/Ppz3/+c53H1ffaHMfRn/70p+BeyH8tWLBAjz76qObMmaNBgwbtc38w67Kh7bA+p512mj766KM6201ZWZn+/Oc/q2vXrurbt28QrwIAAACmUJEKAMAB6M033wxUu+3t2GOPDVSZNtWDDz6oYcOG6eijj9bll1+ubt26aePGjXrjjTe0du3aJrczfvx4/fa3v5WkBk/rb9++ve6++25t3LhRhx56qJ5//nmtXbtWf/7znxUVFSVpdydcamqq5s2bp6SkJCUkJGjw4MHq1q2bHn/8cY0ePVqHH364Jk6cqA4dOmjLli1atmyZkpOTtXjxYkm7Lxa1ZMkSHX/88br66qtVW1urhx56SIcffrg+//zz/b6O8vJyHXvssRoyZIhGjRqlTp06qbCwUK+++qreffddjRkzRkcddVSDj7/rrrv0y1/+Uscdd5wmTpyoXbt26eGHH9YRRxxRbwdwY5KTk3XCCSfonnvuUU1NjTp06KC3335bGzZsCLqtnxs+fLg6duyo1157TXFxcTr77LMbfcztt9+ulStX6he/+IW6dOmi7du365FHHlHHjh0DF1s6/PDDNWTIEE2ZMkU7d+5UWlqannvuOdXW1tZpq0+fPurRo4d++9vfasuWLUpOTtZLL73kaqzQgoICXX311erbt69iYmL0l7/8pc79Z511VlDrck/H/u9//3udf/75ioqK0hlnnLHPGL+SdMstt+jZZ5/V6NGjNXnyZKWlpempp57Shg0b9NJLL8nrpbYBAADABnSkAgBwANr7tOS9LViwIOiO1P79+2v16tW69dZbNXfuXFVWVqpLly4677zzgmpn3Lhxuvnmm9WjR496qwGl3RfVeeqpp3TttdfqscceU2Zmph5++GFddtllgWX2jEM6ZcoUXXnllaqtrdWCBQvUrVs3nXjiiVq1apXuuOMOPfzwwyotLVVWVpYGDx6sK664ItBGv3799NZbbyk3N1dTp05Vx44dddttt2nbtm2NdqSmpqbqscce0xtvvKEFCxYoLy9PERER6t27t+69915Nnjx5v48/44wz9Oyzz2r69Om65ZZb1KtXLz355JN66qmn9NVXXwWxRv9n0aJFuvbaazVnzhw5jqMRI0bozTffVPv27V21t4fX69UFF1yge++9V2ecccY+Fwerz5lnnqmNGzdq/vz5KigoULt27TR8+HDddtttSklJCSz3zDPP6IorrtDMmTOVmpqqSy+9VCeddJJOPfXUwDJRUVFavHixJk+erBkzZig2NlZnnXWWJk2apP79+wf1WkpLS1VZWal169bpoosu2uf+DRs2KCEhocnr8phjjtEdd9yhefPmacmSJfL7/YE2fi4zM1MffPCBbr75Zj300EOqrKxUv379tHjxYv3iF78I6nUAAADAHI/DqPUAAKAFFBQU6JBDDtHUqVN166237nP/iSeeqIKCgpDHY7XVgAEDlJ6eHtL4nwAAAADCh/OIAABAi3jyySfl8/nqrQY8mNTU1OxzCvvy5cv12Wef6cQTTzQTCgAAAECjOLUfAACE1T//+U+tW7dOd955p8aMGaOuXbuajmTUli1blJOTo1//+tdq3769vvnmG82bN09ZWVm68sorTccDAAAA0AA6UgEAQFjdfvvt+uCDD3TcccfpoYceMh3HuDZt2ig7O1uPP/64duzYoYSEBP3iF7/QzJkz1bZtW9PxAAAAADSAMVIBAAAAAAAAoBGMkQoAAAAAAAAAjaAjFQAAAAAAAAAaccCPker3+7V161YlJSXJ4/GYjgMAAAAAAIAGOI6jkpIStW/fXl4v9X/1qaysVHV1dVifIzo6WrGxsWF9Dhsd8B2pW7duVadOnUzHAAAAAAAAQBNt3rxZHTt2NB2j1amsrFS3LonK2+4L6/NkZWVpw4YNdKb+jBUdqXPmzNG9996rvLw89e/fXw899JAGDRrUpMcmJSVJkk5Mn6BIb3Q4Y4aFk5pkOkJInIgI0xFc8yXHmI4QkrL29u7sUr4uNB0hJE6kvb+aekvKTUcIiT85wXQE12oT7fuM2iP6hx2mI4TEibF33cviz1lJ0q5i0wlc88REmY4QmtrwfvkKJ9/OQtMRQuIb2Nt0BNeivt1iOkJoUpNNJ3Cttl2i6QiuRX5n93bjVFWZjuBaxXF9TEdwpba2Uh//c0agPwd1VVdXK2+7Tz+s6arkpPB89ywu8atL9kZVV1fTkfozrb4j9fnnn1dubq7mzZunwYMHa/bs2Ro5cqTWr1+vjIyMRh+/53T+SG+0nR2pEXZ35tnckeqJtHtnERllb/5I67d7iztSvfZ+sZYkv83bTqS92SO99maXJCfCvuODAIs/ZyVJFh6b7eGxOLskyVtrOoFrHo/dndg2H2Pa+H2qDquPE9huTHE8jukIrtn8nVASwzM2IjHJo8Sk8Kwjv1j3DWn13/ZnzZqlyy67TBMnTlTfvn01b948xcfHa/78+fUuX1VVpeLi4joTAAAAAAAAAISiVXekVldXa82aNcrJyQnM83q9ysnJ0apVq+p9zIwZM5SSkhKYGB8VAAAAAAAABxKf4w/rhPq16o7UgoIC+Xw+ZWZm1pmfmZmpvLy8eh8zZcoUFRUVBabNmze3RFQAAAAAAAAAB7BWP0ZqsGJiYhQTY/HYNwAAAAAAAMB++OXIr/CM4Ruudg8ErboitV27doqIiFB+fn6d+fn5+crKyjKUCgAAAAAAAMDBplV3pEZHRys7O1tLly4NzPP7/Vq6dKmGDh1qMBkAAAAAAABghj/M/1C/Vn9qf25uriZMmKCBAwdq0KBBmj17tsrKyjRx4sSg2qnN3y55osKUMnw8nTJMRwiJd1ep6Qiueb5abzpCSFI7tDcdwTV/apLpCKH5z4+mE7jm69PVdISQRPxUYjqCa1EV1aYjuOYU27veJckTkWI6gmtORITpCCGp6dvRdATXvFU+0xFCErGr3HQE1zyFRaYjhCSyuNJ0BNd8PTuYjhCSyLxC0xFciyyw93uV0lJNJwhJ2eHtTEdwLabAzuNLT22N6QhAg1p9R+rYsWO1Y8cOTZ06VXl5eRowYICWLFmyzwWoAAAAAAAAgIOBz3Hkc8Izlmm42j0QtPqOVEmaNGmSJk2aZDoGAAAAAAAAgIOUFR2pAAAAAAAAAHbzy5Ff4akcDVe7B4JWfbEpAAAAAAAAAGgNqEgFAAAAAAAALOKXIx8VqS2OilQAAAAAAAAAaAQVqQAAAAAAAIBFGCPVjIOmI9Xb91B5I2JMxwiap7DMdISQVHdsYzqCa1EJsaYjhKQ62d78ERU1piOEJCK9rekIrvmr7F735Yemm47gWtyGXaYjuObr29V0hND47T1QrMyIMx0hJHF55aYjuOap9ZuOEBJfm3jTEVyL8Lc3HSEkhX1TTUdwrc3yDaYjhMTfzt7vJh6/vfscf4J938P3Fv+Dvd/JK7Ps3NfX1vhMR4BLc+bM0b333qu8vDz1799fDz30kAYNGlTvsi+//LLuuusu/fvf/1ZNTY169eqlG2+8URdddFGdZebNm6c1a9Zo586d+te//qUBAwa00KupH6f2AwAAAAAAABbxOU5Yp2A9//zzys3N1bRp0/Tpp5+qf//+GjlypLZv317v8mlpafr973+vVatW6fPPP9fEiRM1ceJEvfXWW4FlysrKNGzYMN19992u11NzO2gqUgEAAAAAAAA0TXFxcZ3bMTExiompv8p81qxZuuyyyzRx4kRJ0rx58/TGG29o/vz5uuWWW/ZZ/sQTT6xz+7rrrtNTTz2l9957TyNHjpSkQHXqxo0bQ3wlzYeKVAAAAAAAAMAi/jBPktSpUyelpKQEphkzZtSbpbq6WmvWrFFOTk5gntfrVU5OjlatWtXoa3EcR0uXLtX69et1wgknBLUeWhoVqQAAAAAAAADq2Lx5s5KTkwO3G6pGLSgokM/nU2ZmZp35mZmZ+uabbxpsv6ioSB06dFBVVZUiIiL0yCOP6NRTT22e8GFCRyoAAAAAAABgEZ8c+RSei6buaTc5OblOR2pzS0pK0tq1a1VaWqqlS5cqNzdX3bt33+e0/9aEjlQAAAAAAAAArrRr104RERHKz8+vMz8/P19ZWVkNPs7r9apnz56SpAEDBujrr7/WjBkzWnVHKmOkAgAAAAAAABbxOeGdghEdHa3s7GwtXbo0MM/v92vp0qUaOnRok9vx+/2qqqoK7slbGBWpAAAAAAAAAFzLzc3VhAkTNHDgQA0aNEizZ89WWVmZJk6cKEkaP368OnToELhg1YwZMzRw4ED16NFDVVVV+vvf/66nn35ac+fODbS5c+dObdq0SVu3bpUkrV+/XpKUlZW130rXcDpoOlJ9idHyRNY/KG5rFvHvjaYjhCQq3r51vkflIYmmI4TE4w/PWCktIaK02nSEkNQckmo6gmuRhRWmI4QkNq/MdAT3Iuw9ScQT7E/WrYy33N59TvzmWtMRQuKp9Te+UCvlRHhMRwhJRJG9+3tna37jC7ViyclxpiO4FxdrOkFIPD6f6QiuVXROMR3BtaiSGtMRQuKxeX9va3Rbc7cw/3+ncLUdrLFjx2rHjh2aOnWq8vLyNGDAAC1ZsiRwAapNmzbJ6/3fd56ysjJdffXV+vHHHxUXF6c+ffroL3/5i8aOHRtY5vXXXw90xErS+eefL0maNm2apk+f7uq1hcrjOI7d334aUVxcrJSUFA0f9HtFRtr3wR/xr/WmI4SmdzfTCVyjI9Wc6B32frmTJH98lOkIrtnekepERZiO4Jqn2t4OMX+CvT+aSXZ3pDqR9nbAS3SkmuSpsbdDydm01XSEkDh9upqO4FrEzlLTEULixEabjuAaHanm2Py9qirNzmO02ppKrXp7moqKisJ6oSNb7ennWrsuQ0lJ4TkWLCnxa0Df7fwN6nHQVKQCAAAAAAAABwK/PPKFqXzXT1lwg+wuYwAAAAAAAACAFkBFKgAAAAAAAGARv7N7ClfbqB8VqQAAAAAAAADQCCpSAQAAAAAAAIv4wjhGarjaPRBQkQoAAAAAAAAAjThoKlKdaK+cSPv6jb2Z6aYjhMQprzIdwbXowijTEUJSmR5rOoJr3qoa0xFC4kuMNh3BtfIuyaYjhCSqpNZ0BNc8Pnv3OZFFlaYjhKQqM9F0BNdi/7PDdISQ1LRvYzqCaxHF9h7jSJLvm3+bjuDazouHmI4QkthCv+kIriV47K5Q8sXa+/U3bmOh6QiuOTH2rndJ8sfae4wWu73CdARXan12H1u2FCpSzbCvZxEAAAAAAAAAWpjdPw0BAAAAAAAABxm/45HfCU/laLjaPRBQkQoAAAAAAAAAjaAiFQAAAAAAALAIY6SaQUUqAAAAAAAAADSCilQAAAAAAADAIj555QtTfaQvLK0eGKhIBQAAAAAAAIBGUJEKAAAAAAAAWMRxPPI74RnL1AlTuweCg6YjNSq/VJERNaZjBM1JjDcdISS+pBjTEVzzllebjhCShFVbTEdwrbZ3J9MRQlLcLdZ0BNdSvy0zHSEk/pgI0xFc87z7mekIrtUO7W86QkicSHsPFP3Jdh8nRJRZ/Flr+Xld3v6HmY7gWtu1xaYjhMSXHG06gmuVGXGmI4TG3t29ahPbmI7gWlWKvcdnkpT8fanpCO55LN3obc2Ng8JB05EKAAAAAAAAHAh88sgXpl+IwtXugcDy39IBAAAAAAAAIPyoSAUAAAAAAAAs4nO88jnhqY/0OWFp9oBARSoAAAAAAAAANIKKVAAAAAAAAMAifnnkD1N9pF+UpDaEilQAAAAAAAAAaAQVqQAAAAAAAIBFfPLIJ0/Y2kb9DpqOVF9yrDyRsaZjBM0fY/efyFtVazqCax6Ls0tSba+OpiO457f7NIJ2720zHcE9v990gpCUHpFlOoJrnl8cYzqCa3GbS0xHCElZR/uOD/aIqIgzHSE0Fp8bFbW1yHSEkPjaJpqO4FpNcrTpCCGJ3lFhOoJrlW3tXvcJm8pMR3CttGuC6QiuRZXZfXxZ1Mve/WVUhZ3rvraGTjy0Xnb30gEAAAAAAAAHGZ/jlc8Jz6/SPsfu4qZwsrgOAAAAAAAAAABaBhWpAAAAAAAAgEX88sgfprFMw9XugYCKVAAAAAAAAABoBBWpAAAAAAAAgEX88soXpvpIvxgjtSFUpAIAAAAAAABAI6hIBQAAAAAAACzic7zyOeGpj/Q5VKQ2hIpUAAAAAAAAAGjEQVOR6kR65UTa12/s8dv9K4A/OsJ0BNcqD00zHSEksfkVpiO4Vt4x3nSEkHira01HcK2qXZzpCCHx1tq7z4wsrTEdwbXi3immI4Qk5cudpiO45o+NNh0hNBYem+1R1bmN6QghqWwbZTqCa9FF9n7OSlJFhwTTEVzzRdt9FWebv5vUxNm7v4wtqDIdISQev73bjbXHxrV+0wms4JdXfsZIbXH27o0BAAAAAAAAoIUcNBWpAAAAAAAAwIHA53jkc8JzpkC42j0QUJEKAAAAAAAAAI2gIhUAAAAAAACwiE9e+cJUH+ljjNQGUZEKAAAAAAAAAI2gIhUAAAAAAACwiN/xyu+Epz7S71CR2hAqUgEAAAAAAACgEQdNRaoT5ZUTaV+/seOx+0ppJZ1jTEdwLW5HrekIISnpnmA6gmvxedWmI4Skor296z6qxO7t3h9p7z5zx1HxpiO4lpDvNx0hJAWD25mO4Jq3xu5qgbiffKYjuBb7Y4npCCGpTkkxHcE9y4+PnQjTCdwLU+FTi4kos/cYM7IqznQE12oS7e52qEqxd8OP3WXn56yfK8Y3CWOkmmHvHgEAAAAAAAAAWojdPw0BAAAAAAAABxm/JF+YqnftPt8svKhIBQAAAAAAAIBGUJEKAAAAAAAAWMQvr/xhqo8MV7sHAtYMAAAAAAAAADSCilQAAAAAAADAIj7HK58TnvrIcLV7IGDNAAAAAAAAAEAjqEgFAAAAAAAALOKXR355wtY26nfQdKSWZcUoMirGdIygeXyO6QghiS71m47gWkS1vdklKW67vfmr2kSZjhCS2lh7P3QSv/zJdISQVPRoZzqCa+lrK0xHcM1b4zMdISRVafYdH+wRWWH3uq+NizAdwbXyrsmmI4TEW2PvMWZEpd3bfUSV6QTuVSdFm44Qkpo2caYjuGbzezZmp8UbvaT4zdWmI7hW0tPOz6raSE6eRut10HSkAgAAAAAAAAcCxkg1gzUDAAAAAAAAAI2gIhUAAAAAAACwiE9e+cJUHxmudg8ErBkAAAAAAAAAaAQVqQAAAAAAAIBF/I5Hfic8FzoOV7sHAipSAQAAAAAAAKARVKQCAAAAAAAAFvGHcYxUP3WXDTpoOlJjCmsVGVlrOkbQ/FF2b7zeWsd0BNeKukWbjhCSyAp7132bzwpNRwhJVVaC6Qiu/XTsIaYjhCRhW43pCK75Yuzd3/uj7c0uSbVx9ua3ObsklWfYmz9xm890hJDE5leZjuBaZWaM6QghKW8bYTqCawnb7d7unQh7T1WtjbU3e3Wq3d+rPMn25vdF27nd+D125sbBwejR68qVK3XGGWeoffv28ng8evXVV+vc7ziOpk6dqkMOOURxcXHKycnRd999ZyYsAAAAAAAA0Ar4HW9YJ9TP6JopKytT//79NWfOnHrvv+eee/Tggw9q3rx5+vDDD5WQkKCRI0eqsrKyhZMCAAAAAAAAaMicOXPUtWtXxcbGavDgwfroo48aXPbll1/WwIEDlZqaqoSEBA0YMEBPP/10nWVaY4Gl0VP7R48erdGjR9d7n+M4mj17tv7whz/ol7/8pSRp4cKFyszM1Kuvvqrzzz+/3sdVVVWpqup/pyoVFxc3f3AAAAAAAADAEJ888ik8wyC4aff5559Xbm6u5s2bp8GDB2v27NkaOXKk1q9fr4yMjH2WT0tL0+9//3v16dNH0dHR+tvf/qaJEycqIyNDI0eOlPS/AsunnnpK3bp106233qqRI0dq3bp1io2NDfl1utFqa3U3bNigvLw85eTkBOalpKRo8ODBWrVqVYOPmzFjhlJSUgJTp06dWiIuAAAAAAAAcMAoLi6uM+1duPhzs2bN0mWXXaaJEyeqb9++mjdvnuLj4zV//vx6lz/xxBN11lln6bDDDlOPHj103XXXqV+/fnrvvfck7Vtg2a9fPy1cuFBbt27dZ2jQltRqO1Lz8vIkSZmZmXXmZ2ZmBu6rz5QpU1RUVBSYNm/eHNacAAAAAAAAQEtqiTFSO3XqVKdYccaMGfVmqa6u1po1a+oUQ3q9XuXk5Oy3GHIPx3G0dOlSrV+/XieccIIk9wWW4Wb01P5wiImJUUyM3VfyBAAAAAAAAEzavHmzkpOTA7cb6m8rKCiQz+ertxjym2++abD9oqIidejQQVVVVYqIiNAjjzyiU089VZL7Astwa7UdqVlZWZKk/Px8HXLIIYH5+fn5GjBggKFUAAAAAAAAgFk+uRvLtKltS1JycnKdjtTmlpSUpLVr16q0tFRLly5Vbm6uunfvrhNPPDFszxmqVntqf7du3ZSVlaWlS5cG5hUXF+vDDz/U0KFDDSYDAAAAAAAAIEnt2rVTRESE8vPz68zPz88PFErWx+v1qmfPnhowYIBuvPFGnXvuuYHhA/YusAymzXAzWpFaWlqqf//734HbGzZs0Nq1a5WWlqbOnTvr+uuv1x//+Ef16tUrcHWu9u3ba8yYMUE/ly/GK09Uq+03blBFWoTpCCFJ2djwQMStnT+q1RZsN0mNNzy/TLWEsp7h+8WrJdTG2Lev2SOuoNZ0hJCUtY8yHcG1+O32rvsSi9e7JCVtqjYdwbWfDrd7OKPkTfZu92EqAGkxBf3jTUdwLe4nv+kIIYkptje/P8ruDb/sEHs/r6LKHdMRXKtJsPfYWJJS1hWajuBaYfe2piO44qu2e5tpKXuPZRqOtoMRHR2t7OxsLV26NNBn5/f7tXTpUk2aNKnpz+v3By5otXeB5Z4z0/cUWF511VVB5WtORnuKPvnkE5100kmB27m5uZKkCRMm6Mknn9Tvfvc7lZWV6fLLL1dhYaGGDRumJUuWKDY21lRkAAAAAAAAAHvJzc3VhAkTNHDgQA0aNEizZ89WWVmZJk6cKEkaP368OnToEKg4nTFjhgYOHKgePXqoqqpKf//73/X0009r7ty5kiSPx9OsBZbNxWhH6oknnijHafiXNY/Ho9tvv1233357C6YCAAAAAAAAWi+f45UvTBWpbtodO3asduzYoalTpyovL08DBgzQkiVLAheL2rRpk7ze/7VbVlamq6++Wj/++KPi4uLUp08f/eUvf9HYsWMDy7TGAkuPs7+ezANAcXGxUlJSNPgXtysyyr5KVk7tN2dnH7tPl/T4Gl+mtUrYbnF42X1qf0yhxafZSqpIt3dIDptP7S/l1H5jOLXfILvPcFZplr3HmLaf2m8zr92HaKqJt/eNa/Op/X57dzeS7D61f9twW0/tr9RXj/2fioqKwnqhI1vt6eeasmqUYhPDcxxeWVqjGUOX8Deoh73fOAEAAAAAAICDkCOP/GH6Zdex/RfjMLK3bAoAAAAAAAAAWggVqQAAAAAAAIBFWtsYqQcL1gwAAAAAAAAANOKgqUiNKvMpMtK+0dGdCLvHpSjPjDYdwbW0r+29UJYk1cbZO6p7RLXdF5Eo7G7vrjUhz7795N4cr70XPfJbvL/31tp7AQxJ8lh83c3YXXbvL/1R9m73FW3trkfwxdq77qNL7N7uq5PtPUZzvPbuLyXJZ/E+J6GoxnQE12oS7d3mJakmLd50BNdsvYhvbY2duVua3/HI74Rnvxaudg8Edh8BAgAAAAAAAEALsLdsCgAAAAAAADgI+eSVL0z1keFq90DAmgEAAAAAAACARlCRCgAAAAAAAFiEMVLNoCIVAAAAAAAAABpBRSoAAAAAAABgEb+88oepPjJc7R4IWDMAAAAAAAAA0AgqUgEAAAAAAACL+ByPfGEayzRc7R4IDpqO1Mo2kYqMsu/l+qLt3ni9PtMJ3KtOsW972VtlmwjTEVzz2xtdkpSwzW86gmtlWTGmI4TEW+OYjuBaRbq9+5yIKnvXuySVZUWbjuCax97djSSpNsbe45zICtMJQmPz/rK4i737S8nu4/voYnu3G0mKKbZ3p7nzMHuP0WIK7V3vkpQ3ONZ0BNdS/m06gTu+ak6eRutl91EIAAAAAAAAcJDxOx75w1Q5Gq52DwR08wMAAAAAAABAI6hIBQAAAAAAACziOF75nfDURzphavdAwJoBAAAAAAAAgEZQkQoAAAAAAABYxCePfArPWKbhavdAQEUqAAAAAAAAADSCilQAAAAAAADAIn5H8jvhqRz1O2Fp9oBw0HSkxudXKzLSvgLcmkS7/0TlGfbmjy6ye89h89jQkVV2r/uocr/pCO5ZfgaHP9LeFxBRY+92X51o8Q5HUuwun+kIru3qZe/nrCRFVphO4F5cgcX7ekm+KHv3lx67V73Vn7XeWns/qySpoq29n1eR5fau++hSu9+0MYUWf9Y6lm43lsbGwcHiPQIAAAAAAABw8PE7XvnDVEEVrnYPBKwZAAAAAAAAAGgEFakAAAAAAACARfzyyB+m8WLC1e6BgIpUAAAAAAAAAGgEFakAAAAAAACARXyORz4nPJWj4Wr3QEBFKgAAAAAAAAA0gopUAAAAAAAAwCJ+xyu/E576yHC1eyBgzQAAAAAAAABAIw6aitSKjGhFRkWbjhG0kg4RpiOEJLrYMR3BtbJD7H57RJfau+69tfZml6TyDLvftzaL3ek3HcG1qDJ7szteu8dQqo2193dlr890gtBEl9i7v9/Z197tRpLSP7N34ynpaPfnbGS5vdu97fscm9l8bG/z56wkyd5Vb+171rE0d0vzyyN/mMYy9cvu4/twsnyPBgAAAAAAAADhZ3fJHQAAAAAAAHCQceQJW+WoQ0Vqg6hIBQAAAAAAAIBGUJEKAAAAAAAAWMTvhHGM1DC1eyCgIhUAAAAAAAAAGkFFKgAAAAAAAGARv+OV3wlPfWS42j0QsGYAAAAAAAAAoBFUpAIAAAAAAAAWYYxUMw6ajtTyzAhFREeYjhG0mCLHdISDVnmm3TuOpE3VpiO45o+2u1jeW2NvftvP4LA5f0G/KNMRXIvZafdnVU2Svft7b43pBKGJLvGbjuBa1of2Zpek7dn27nNid9i9z4kv8JmO4FpZpn3fp/ZW0c7e/b0/yt7skRV2v2cjKk0ncK8yzc7txldlZ24cHA6ajlQAAAAAAADgQOCXR36FqSI1TO0eCCyu3QEAAAAAAACAlkFFKgAAAAAAAGARxkg1g4pUAAAAAAAAAGgEFakAAAAAAACARahINYOKVAAAAAAAAABoBBWpAAAAAAAAgEWoSDXjoOlIrY2TnBjTKYJXk2j3xhtRaTqBe9GFjukIISntEG06gmt+y/dMlen2vm9tX/fR600ncC+y3HQC9xzLz2+x+TgxptBvOkJIKtrZu/FEVNmbXZLafV5rOoJrhT3s/rAq7mRv/shyu4+PE3+0N39VmsUfVhYf40iS396vVYqoMp3AHcdnOgHQMHs/xQEAAAAAAICDEBWpZtj9UzoAAAAAAAAAtAAqUgEAAAAAAACLOJL8Ck/lqL0DoYQfFakAAAAAAAAA0AgqUgEAAAAAAACLMEaqGVSkAgAAAAAAAEAjqEgFAAAAAAAALEJFqhlUpAIAAAAAAABAIw6aitSoUkcR1fZdd8wXbfmvABZ31Ven2L3uvTX2be97VKbbve4Tf/SbjuBaRTuL37SSnAh7tx1fjOkE7vktXu+SVJlu7/4yusTude+3+Ei0sq3d674mIcJ0BNciqkwnCI3N+/vaBLu3+6gSe/f3sQX2Zi/rYPd2Y/O6r062c9377F3lLYqKVDPs/sYMAAAAAAAAAC3A4joAAAAAAAAA4OBDRaoZVKQCAAAAAAAACMmcOXPUtWtXxcbGavDgwfroo48aXPaxxx7T8ccfrzZt2qhNmzbKycnZZ/n8/HxdfPHFat++veLj4zVq1Ch999134X4Z+0VHKgAAAAAAAGARx/GEdQrW888/r9zcXE2bNk2ffvqp+vfvr5EjR2r79u31Lr98+XJdcMEFWrZsmVatWqVOnTppxIgR2rJly39fn6MxY8boP//5j1577TX961//UpcuXZSTk6OysrKQ1l0o6EgFAAAAAAAA4NqsWbN02WWXaeLEierbt6/mzZun+Ph4zZ8/v97ln3nmGV199dUaMGCA+vTpo8cff1x+v19Lly6VJH333XdavXq15s6dq2OOOUa9e/fW3LlzVVFRoWeffbYlX1oddKQCAAAAAAAAFvHLE9ZJkoqLi+tMVVVV9Waprq7WmjVrlJOTE5jn9XqVk5OjVatWNen1lJeXq6amRmlpaZIUeK7Y2Ng6bcbExOi9995ztc6aAx2pAAAAAAAAAOro1KmTUlJSAtOMGTPqXa6goEA+n0+ZmZl15mdmZiovL69Jz3XzzTerffv2gc7YPn36qHPnzpoyZYp27dql6upq3X333frxxx+1bdu20F5YCCKNPXML80V7pBj7rjoWWeGYjhCSki6mE7gXU2jf9rK3miR783v8phOEprKNvb9RRZXYvc+paGfvuo+oNJ3APcfe1S5Jit9q7/6yNrbxZVozx+Ij0ZT/2P1h5a21d39flmH3Tidhm73rPrLS3uyS9FPfCNMRXLN5f5n0g93bjS/GdAL3KjPsXPd+y/c1LcXveOR3MZZpU9uWpM2bNys5OTkwPyYmPG+ImTNn6rnnntPy5csDFahRUVF6+eWXdemllyotLU0RERHKycnR6NGj5TjmthGLd8cAAAAAAAAAwiE5OblOR2pD2rVrp4iICOXn59eZn5+fr6ysrP0+9r777tPMmTP1j3/8Q/369atzX3Z2ttauXauioiJVV1crPT1dgwcP1sCBA4N/Mc3E7p9zAQAAAAAAgIOM43jCOgUjOjpa2dnZgQtFSQpcOGro0KENPu6ee+7RHXfcoSVLluy3czQlJUXp6en67rvv9Mknn+iXv/xlUPmaExWpAAAAAAAAAFzLzc3VhAkTNHDgQA0aNEizZ89WWVmZJk6cKEkaP368OnToEBhn9e6779bUqVO1aNEide3aNTCWamJiohITEyVJL774otLT09W5c2d98cUXuu666zRmzBiNGDHCzIsUHakAAAAAAACAVVpijNRgjB07Vjt27NDUqVOVl5enAQMGaMmSJYELUG3atEle7/9OjJ87d66qq6t17rnn1mln2rRpmj59uiRp27Ztys3NVX5+vg455BCNHz9et956q/sX1gzoSAUAAAAAAAAQkkmTJmnSpEn13rd8+fI6tzdu3Nhoe5MnT9bkyZObIVnzoSMVAAAAAAAAsIibsUyDaRv142JTAAAAAAAAANAIKlIBAAAAAAAAizhhHCOVitSGGe1InTFjhl5++WV98803iouL07HHHqu7775bvXv3DixTWVmpG2+8Uc8995yqqqo0cuRIPfLII4HBapsqfodfEVH+5n4JYVfSxe6i4agS0wnciyw3neAgZvk+uybRdAL3auPtXvlRZaYTuBdTZN9n1B4lnez+rHIs/lk5ZqfpBKGpSjKdwL3S9nZv9/4o0wnc88WYThCa8vamE7jnqbV7u+d8TDMKjnJMRwhJynp7NxxPjZ3r3lNjOgHQMKN7hBUrVuiaa67R6tWr9c4776impkYjRoxQWdn/vgnfcMMNWrx4sV588UWtWLFCW7du1dlnn20wNQAAAAAAAGCOI8lxwjSZfnGtmNEajCVLltS5/eSTTyojI0Nr1qzRCSecoKKiIj3xxBNatGiRTj75ZEnSggULdNhhh2n16tUaMmSIidgAAAAAAAAADjKt6mS2oqIiSVJaWpokac2aNaqpqVFOTk5gmT59+qhz585atWpVvR2pVVVVqqqqCtwuLi4Oc2oAAAAAAACg5fjlkSdM4+L5bR9vL4xazWAffr9f119/vY477jgdccQRkqS8vDxFR0crNTW1zrKZmZnKy8urt50ZM2YoJSUlMHXq1Cnc0QEAAAAAAAAc4ILqSK2trdXChQuVn5/f7EGuueYaffnll3ruuedCamfKlCkqKioKTJs3b26mhAAAAAAAAIB5juMJ64T6BXVqf2RkpK688kp9/fXXzRpi0qRJ+tvf/qaVK1eqY8eOgflZWVmqrq5WYWFhnarU/Px8ZWVl1dtWTEyMYmIsv5QnAAAAAAAAgFYl6FP7Bw0apLVr1zbLkzuOo0mTJumVV17RP//5T3Xr1q3O/dnZ2YqKitLSpUsD89avX69NmzZp6NChzZIBAAAAAAAAsInf8YR1Qv2CvtjU1VdfrdzcXG3evFnZ2dlKSEioc3+/fv2a3NY111yjRYsW6bXXXlNSUlJg3NOUlBTFxcUpJSVFl156qXJzc5WWlqbk5GRde+21Gjp0aL0Xmtqfwp5eRcS2miFhmyy60HSC0PijTCdwL6rEMR0hJGUd7N3xRVt+jbjathZvOxZHl6TqVNMJ3KtJsO8zag+/5SeCJH9v74a/8wjTCULji/ObjuBa8kZ737OSVNnW3uME269/EbPT3hcQVWbv/lKSSrrZu+79Efau++hCu/eXtYmmE7iXtMl0And81aYTAA0LuiP1/PPPlyRNnjw5MM/j8chxHHk8Hvl8via3NXfuXEnSiSeeWGf+ggULdPHFF0uSHnjgAXm9Xp1zzjmqqqrSyJEj9cgjjwQbGwAAAAAAADggOM7uKVxto35Bd6Ru2LCh2Z7cacJfJjY2VnPmzNGcOXOa7XkBAAAAAAAAIBhBd6R26dIlHDkAAAAAAAAANIHjeOSEaSzTcLV7IAi6I3XhwoX7vX/8+PGuwwAAAAAAAABAaxR0R+p1111X53ZNTY3Ky8sVHR2t+Ph4OlIBAAAAAACAMKIi1YygL5+3a9euOlNpaanWr1+vYcOG6dlnnw1HRgAAAAAAAAAwKuiK1Pr06tVLM2fO1K9//Wt98803zdEkAAAAAAAAgHr4HY88Yaoc9VOR2qCgK1IbEhkZqa1btzZXcwAAAAAAAADQagRdkfr666/Xue04jrZt26aHH35Yxx13XLMFa27RxVJElekUwavIcExHCElUib2/YtQk2Ztdknyx9m47JWn2Zpek6F3N9htVi/PF273uI8vsfd9GlZpO4J63xnSC0JR2tHe7if3JdILQeKsjTEdwrbSj6QSh8cWYTuCe47X7s8rx2LvPqcgynSA0/kh7t534bfZuN6Vd/KYjhMTj2HtsXxtr53bjq7Izd0tznN1TuNpG/YLuSB0zZkyd2x6PR+np6Tr55JN1//33N1cuAAAAAAAAAGg1gu5I9fvt/jUJAAAAAAAAsNnuitTwVO9SkdqwkGrUHceRw9oFAAAAAAAAcIBz1ZG6cOFCHXnkkYqLi1NcXJz69eunp59+urmzAQAAAAAAAPgZx/GEdUL9gj61f9asWbr11ls1adKkwMWl3nvvPV155ZUqKCjQDTfc0OwhAQAAAAAAAMCkoDtSH3roIc2dO1fjx48PzDvzzDN1+OGHa/r06XSkAgAAAAAAAGHk/HcKV9uoX9Cn9m/btk3HHnvsPvOPPfZYbdu2rVlCAQAAAAAAAEBrEnRFas+ePfXCCy/o//7v/+rMf/7559WrV69mC9bcfNGSok2ncCGky4GZ57H4Z4zKdqYThCZhi+kE7tXG2b3h+23c1/xXrd2rXrEF9u50HK+94xDVJJtOEBrHa/F2U23vdiP99/jMUjVJ9m43kqwuNfH4TScITVUbe1d+dLHd+xzPUSWmI7hWnBxvOoJrTrzPdISQRJbZ+2EVU2w6gTu+KtMJ7BDOsUwZI7VhQXek3nbbbRo7dqxWrlwZGCP1/fff19KlS/XCCy80e0AAAAAAAAAAMC3ojtRzzjlHH374oR544AG9+uqrkqTDDjtMH330kY466qjmzgcAAAAAAABgbwySakTQHamSlJ2drb/85S/NnQUAAAAAAAAAWqUmd6QWFzdtcI3kZMsHSgMAAAAAAABaszCOkSrGSG1QkztSU1NT5fE0vCIdx5HH45HPZ/dA0gAAAAAAAADwc03uSF22bFng/47j6LTTTtPjjz+uDh06hCUYAAAAAAAAgH05zu4pXG2jfk3uSB0+fHid2xERERoyZIi6d+/e7KEAAAAAAAAAoDVxdbEpAAAAAAAAAGY4YRwjNWxjrx4ADpqO1IhKKcLC0uToXXZvvJXtLFzp/5X8vekEoalKtXfbcbymE4TGH2M6QQjs3WwkSb4Ye19ATZLpBO7VJPlNRwhJXJ69Ox2/5Udyvjh7jxO8NaYThCaqxN79pe2fVTYf51S0t/t6GImr7P2wrext704n+Yto0xFC4q0yncC9ygzTCdzxVZpOADQspMPv/V18CgAAAAAAAEAYOJ7dU7jaRr2a3JF69tln17ldWVmpK6+8UgkJCXXmv/zyy82TDAAAAAAAAABaiSZ3pKakpNS5/etf/7rZwwAAAAAAAADYP8fZPYWrbdSvyR2pCxYsCGcOAAAAAAAAAGi1LL9EAQAAAAAAAHCQcf47hatt1Mvia0YCAAAAAAAAQMugIhUAAAAAAACwiON45DiesLWN+h00HallXfzyxvpNxwiax77IdVlcDu547S7Y9sWYTuBeRLXpBKFxvPZu+L5oe7NLUnl70wncq03xmY7gmieu1nSEkFQo2nQE1zw1dh/keu3edKzmt/hbgC/e7s+qyFJ737eRxRwfmxK10943bWkXu7/Uxm+1d7uvSbBzf+mPsDM3Dg5B7RFqamp0ySWXaMOGDeHKAwAAAAAAAKAxTpgmNCiojtSoqCi99NJL4coCAAAAAAAAAK1S0DXqY8aM0auvvhqGKAAAAAAAAAAas2eM1HBNqF/QA6306tVLt99+u95//31lZ2crISGhzv2TJ09utnAAAAAAAAAA0BoE3ZH6xBNPKDU1VWvWrNGaNWvq3OfxeOhIBQAAAAAAAMIpnOOZMk5qg4LuSOVCUwAAAAAAAAAONkGPkbpHdXW11q9fr9ra2ubMAwAAAAAAAGC/PGGeUJ+gO1LLy8t16aWXKj4+Xocffrg2bdokSbr22ms1c+bMZg8IAAAAAAAAAKYFfWr/lClT9Nlnn2n58uUaNWpUYH5OTo6mT5+uW265pVkDNhdvlUdej3096jGF9mXeW22c6QTulfTwm44QksSNrgvOjavItHtAlphd9r5vHXs3G0mSP9p0Ave8lfaufH/whxOtSlyeveu+qq3d+8vIMnv3l9Vt7F73/mh780cV2bvdSFJNir3r3h9pb3ZJKu/kMx3BNU+tvdt9ZKm9n7OSVNbR3u0mwtLjS4/du5qWwxipRgT9rnr11Vf18MMPa9iwYfLs1TF5+OGH6/vvv2/WcAAAAAAAAAAQrMLCQj3++OOaMmWKdu7cKUn69NNPtWXLFtdtBl1CsmPHDmVkZOwzv6ysrE7HKgAAAAAAAIAwoCJ1vz7//HPl5OQoJSVFGzdu1GWXXaa0tDS9/PLL2rRpkxYuXOiq3aArUgcOHKg33ngjcHtP5+njjz+uoUOHugoBAAAAAAAAAM0hNzdXF198sb777jvFxsYG5p922mlauXKl63aDrki96667NHr0aK1bt061tbX605/+pHXr1umDDz7QihUrXAcBAAAAAAAA0ASOZ/cUrrYt9/HHH+vRRx/dZ36HDh2Ul5fnut2gK1KHDRumzz77TLW1tTryyCP19ttvKyMjQ6tWrVJ2drbrIAAAAAAAAAAQqpiYGBUXF+8z/9tvv1V6errrdoPqSC0uLtY777yjr7/+WnfddZc++ugjrVu3Tn/5y1905JFHug4BAAAAAAAAoGkcJ7yTG3PmzFHXrl0VGxurwYMH66OPPmpw2ccee0zHH3+82rRpozZt2ignJ2ef5UtLSzVp0iR17NhRcXFx6tu3r+bNm9ekLGeeeaZuv/121dTUSNo9NOmmTZt0880365xzznH3AhVER+ratWvVp08fjRo1SmeccYZ69uypt956y/UTAwAAAAAAALDf888/r9zcXE2bNk2ffvqp+vfvr5EjR2r79u31Lr98+XJdcMEFWrZsmVatWqVOnTppxIgR2rJlS2CZ3NxcLVmyRH/5y1/09ddf6/rrr9ekSZP0+uuvN5rn/vvvV2lpqTIyMlRRUaHhw4erZ8+eSkpK0p133un6dXocp2n9zCNHjlRpaanuu+8+xcbG6o477tAXX3yh7777zvWTt4Ti4mKlpKSo27Q75d1rcFlb1GTUmI4QEk+033QE16I3xpiOEJLqLlWmI7gWsc3udV9r8fs27vto0xFCUpto7+UlPd3LTEdwzfNNoukIIalNsPezKrIs6FGaWhWPvate1W0sDi/JH2tv/qjCCNMRQuKPtPezyltt95h5ERbnr421d7txOleYjhASf629n7XRG+zrA5EkX2Wl/nPX/6moqEjJycmm47Q6e/q5Oj50m7xx4fkb+ysq9eO107R58+Y6f4OYmBjFxNT/fX3w4ME65phj9PDDD+9uw+9Xp06ddO211+qWW25p9Dl9Pp/atGmjhx9+WOPHj5ckHXHEERo7dqxuvfXWwHLZ2dkaPXq0/vjHPzbptbz33nv6/PPPVVpaqqOPPlo5OTlNelxDmnyxqTVr1ujtt9/W0UcfLUmaP3++0tLSVFxczIYNAAAAAAAAHEA6depU5/a0adM0ffr0fZarrq7WmjVrNGXKlMA8r9ernJwcrVq1qknPVV5erpqaGqWlpQXmHXvssXr99dd1ySWXqH379lq+fLm+/fZbPfDAA01+DcOGDdOwYcOavHxjmtyRunPnTnXs2DFwOzU1VQkJCfrpp5/oSAUAAAAAAABaiuPZPYWrbaneitT6FBQUyOfzKTMzs878zMxMffPNN016yptvvlnt27evUzH60EMP6fLLL1fHjh0VGRkpr9erxx57TCeccEK9bTz44INNei5Jmjx5cpOX3VuTO1Ilad26dcrLywvcdhxHX3/9tUpKSgLz+vXr5yoIAAAAAAAAgNYhOTm5RYonZ86cqeeee07Lly9X7F7Dcj700ENavXq1Xn/9dXXp0kUrV67UNddcs0+H6x4/r1TdsWOHysvLlZqaKkkqLCxUfHy8MjIyWqYj9ZRTTtHPh1Q9/fTT5fF45DiOPB6PfD6fqyAAAAAAAAAAGudxdk/hajsY7dq1U0REhPLz8+vMz8/PV1ZW1n4fe99992nmzJn6xz/+Uac4s6KiQv/3f/+nV155Rb/4xS8k7S7eXLt2re677756O1I3bNgQ+P+iRYv0yCOP6IknnlDv3r0lSevXr9dll12mK664IrgXuJcmd6TuHQYAAAAAAAAAoqOjlZ2draVLl2rMmDGSdl9saunSpZo0aVKDj7vnnnt055136q233tLAgQPr3FdTU6Oamhp5vXUv+BYRESG/v/GLZt56663661//GuhElaTevXvrgQce0Lnnnqtx48YF8Qr/p8kdqV26dHH1BAAAAAAAAACakfPfKVxtByk3N1cTJkzQwIEDNWjQIM2ePVtlZWWaOHGiJGn8+PHq0KGDZsyYIUm6++67NXXqVC1atEhdu3YNDCWamJioxMREJScna/jw4brpppsUFxenLl26aMWKFVq4cKFmzZrVaJ5t27aptrZ2n/k+n2+fytlgBHVqPwAAAAAAAADsbezYsdqxY4emTp2qvLw8DRgwQEuWLAlcgGrTpk11qkvnzp2r6upqnXvuuXXamTZtmqZPny5Jeu655zRlyhSNGzdOO3fuVJcuXXTnnXfqyiuvbDTPKaecoiuuuEKPP/64jj76aEnSmjVrdNVVV9U7LEBT0ZEKAAAAAAAA2MTx7J7C1bYLkyZNavBU/uXLl9e5vXHjxkbby8rK0oIFC1xlmT9/fqBCNioqSpJUW1urkSNH6vHHH3fVpnQQdaT64h05seGqeQ6fiELL/0Rhek+3BMfb+DKtWfy62MYXaqUqDml8vJPWLGKnve/b6jZ2r3ub9zmpbyeYjuDaT8dVm44QkrgN0aYjuFYbb9+xzd58cfbmjyq2eIcjqaZtjekIrtVY/lEVkWLvuq/dZe/+UpJqoizeePz27nMiN8eZjhCSSHs/qlTd1s6Lgfsr7MyN1iU9PV1///vf9e233+qbb76RJPXp00eHHnpoSO3a+20fAAAAAAAAOBi1sjFSW6tDDz005M7TvQXdkVpRUSHHcRQfHy9J+uGHH/TKK6+ob9++GjFiRLMFAwAAAAAAAIBgXXLJJfu9f/78+a7aDboj9Ze//KXOPvtsXXnllSosLNTgwYMVFRWlgoICzZo1S1dddZWrIAAAAAAAAACagIrU/dq1a1ed2zU1Nfryyy9VWFiok08+2XW7QXekfvrpp3rggQckSX/961+VmZmpf/3rX3rppZc0depUOlIBAAAAAAAAGPPKK6/sM8/v9+uqq65Sjx49XLcb9OV0ysvLlZSUJEl6++23dfbZZ8vr9WrIkCH64YcfXAcBAAAAAAAA0AROmKcDkNfrVW5ubqBA1FUbwT6gZ8+eevXVV7V582a99dZbgXFRt2/fruTkZNdBAAAAAAAAACBcvv/+e9XW1rp+fNCn9k+dOlUXXnihbrjhBp1yyikaOnSopN3VqUcddZTrIAAAAAAAAACawPHsnsLVtuVyc3Pr3HYcR9u2bdMbb7yhCRMmuG436I7Uc889V8OGDdO2bdvUv3//wPxTTjlFZ599tusg4Ra1y6uI2KALcI2rbuM3HSEkkSX2vvni8+3NLklFh/pMR3AtbluE6Qgh8UeZTuBeZZdq0xFC4i0O+mOt1SjtbO8+JyrP4o1eUpXFn7WxO+w7ttmbr2Ol6Qiu1dbGmI4QEs92e/N77d7s5eywd90ryu5zPSMS3VcgmeYrtfcYp7ZdjekIIYnKt/c4x/Ha+Z61NTdal3/96191bnu9XqWnp+v+++/XJZdc4rrdoPfGl1xyif70pz/tU316+OGH69prr9X8+fNdhwEAAAAAAACwfx5n9xSutm23bNmysLQb9O+5Tz31lCoqKvaZX1FRoYULFzZLKAAAAAAAAABw4+STT1ZhYeE+84uLi3XyySe7brfJFanFxcVyHEeO46ikpESxsbGB+3w+n/7+978rIyPDdRAAAAAAAAAATeD8dwpX25Zbvny5qqv3HbqusrJS7777rut2m9yRmpqaKo/HI4/Ho0MPPXSf+z0ej2677TbXQQAAAAAAAADArc8//zzw/3Xr1ikvLy9w2+fzacmSJerQoYPr9pvckbps2TI5jqOTTz5ZL730ktLS0gL3RUdHq0uXLmrfvr3rIAAAAAAAAADg1oABAwKFoPWdwh8XF6eHHnrIdftN7kgdPny4JGnDhg3q1KmTvLZfLhMAAAAAAADAAWPDhg1yHEfdu3fXRx99pPT09MB90dHRysjIUEREhOv2m9yRukeXLl1UWFiojz76SNu3b5ff769z//jx412HAQAAAAAAALB/HkmeMI1l6glPsy2iS5cukrRPf2VzCbojdfHixRo3bpxKS0uVnJwsj+d/q9fj8dCRCgAAAAAAAKBFvf766xo9erSioqL0+uuv73fZM88809VzBN2ReuONN+qSSy7RXXfdpfj4eFdPakLVITXyxrkv3TXFU2v5EAoee3/HKBpYZTpCSJxy+7b3PXyxphOExh9t7yUOPRZvN5IUWW7vPqeq475XlLSGvZu8JMkb4zMdwbXK9MaXac3iv4gzHcE1X7TpBKGJOWan6QiuFf2QYjpCSCIq7T2+j8mzN7sklVv8xvX67D3G8ceFpyqspfhj7D3Qid5p57G9v9LO3C3O8eyewtW2hcaMGaO8vDxlZGRozJgxDS7n8Xjk87n7DhD0J+GWLVs0efLkZulEnTt3rvr166fk5GQlJydr6NChevPNNwP3V1ZW6pprrlHbtm2VmJioc845R/n5+SE/LwAAAAAAAIADh9/vV0ZGRuD/DU1uO1ElFx2pI0eO1CeffOL6CffWsWNHzZw5U2vWrNEnn3yik08+Wb/85S/11VdfSZJuuOEGLV68WC+++KJWrFihrVu36uyzz26W5wYAAAAAAACs5IR5Qr2CPrX/F7/4hW666SatW7dORx55pKKiourcH8wYA2eccUad23feeafmzp2r1atXq2PHjnriiSe0aNEinXzyyZKkBQsW6LDDDtPq1as1ZMiQetusqqpSVdX/TskuLi5uch4AAAAAAAAA9nnwwQebvOzkyZNdPUfQHamXXXaZJOn222/f575Qxhjw+Xx68cUXVVZWpqFDh2rNmjWqqalRTk5OYJk+ffqoc+fOWrVqVYMdqTNmzNBtt93mKgMAAAAAAADQ6oWzctTSitQHHnigSct5PJ6W60j1+5t3oOgvvvhCQ4cOVWVlpRITE/XKK6+ob9++Wrt2raKjo5Wamlpn+czMTOXl5TXY3pQpU5Sbmxu4XVxcrE6dOjVrZgAAAAAAAACtx4YNG8L+HEF3pDa33r17a+3atSoqKtJf//pXTZgwQStWrHDdXkxMjGJiYpoxIQAAAAAAANB6eJzdU7jaPpA4zu4X5PF4Qm6rSR2pDz74oC6//HLFxsY2Ot5AsKWx0dHR6tmzpyQpOztbH3/8sf70pz9p7Nixqq6uVmFhYZ2q1Pz8fGVlZQX1HAAAAAAAAAAOHk888YQeeOABfffdd5KkXr166frrr9dvfvMb1202qSP1gQce0Lhx4xQbG7vf8QZCGWNgD7/fr6qqKmVnZysqKkpLly7VOeecI0lav369Nm3apKFDh4b0HAAAAAAAAIC1GCN1v6ZOnapZs2bp2muvDfQjrlq1SjfccIM2bdpU77WfmqJJHal7jzHQnOMNTJkyRaNHj1bnzp1VUlKiRYsWafny5XrrrbeUkpKiSy+9VLm5uUpLS1NycnLgxTd0oan98cbVyhtf22zZW0zoVcdG+ctiTUdwzbMzynSEkNi86dTG273XdqLsze/EubtgYGvhq7J3y/eUR5iO4JoTb/d24xRHm47gWtQur+kIISntVWM6gmtRidWmI4Sk6vtU0xFcizykwnSEkNRW27u/r2hv7zGOJDml9h7f7zkt1UbeRHv39ZIU1dbCfoT/8vnsPDZ2yitNR8ABYO7cuXrsscd0wQUXBOadeeaZ6tevn6699trwdqQ2JNQxBrZv367x48dr27ZtSklJUb9+/fTWW2/p1FNPlbS7Etbr9eqcc85RVVWVRo4cqUceeSSUyAAAAAAAAIDdqEjdr5qaGg0cOHCf+dnZ2aqtdf8DiasyhoULF+rII49UXFyc4uLi1K9fPz399NNBt/PEE09o48aNqqqq0vbt2/WPf/wj0IkqSbGxsZozZ4527typsrIyvfzyy4yPCgAAAAAAAKBBF110kebOnbvP/D//+c8aN26c63aDrkidNWuWbr31Vk2aNEnHHXecJOm9997TlVdeqYKCAt1www2uwwAAAAAAAADYP4+zewpX2weCJ554Qm+//XZgiNAPP/xQmzZt0vjx45WbmxtYbtasWU1uM+iO1Iceekhz587V+PHjA/POPPNMHX744Zo+fTodqQAAAAAAAACM+fLLL3X00UdLkr7//ntJUrt27dSuXTt9+eWXgeWCHa406I7Ubdu26dhjj91n/rHHHqtt27YF2xwAAAAAAACAYDie3VO42rbcsmXLwtJu0GOk9uzZUy+88MI+859//nn16tWrWUIBAAAAAAAAQGsSdEXqbbfdprFjx2rlypWBMVLff/99LV26tN4OVgAAAAAAAADNyPnvFK62LVdZWamHHnpIy5Yt0/bt2+X3++vc/+mnn7pqN+iO1HPOOUcfffSRZs2apVdffVWSdNhhh+mjjz7SUUcd5SpES3CKo+XURJuOETQnodZ0hJA4sf7GF2qtbC9lj7B3z+ePtHi7kaRoe/NHb40yHSEk1Rn27jM9sT7TEdyrDvoEl1bFsXjdV7e1d19vu8h1CaYjhKS2V6XpCK7Vbo8zHSEkEVWWH2Pa7BB7t/v4xCrTEVwrL4sxHSEklcUW56+1c3/jr+D4BqG79NJL9fbbb+vcc8/VoEGDgh4LtSFBdaQWFxfrww8/VHV1tR544AGlp6c3SwgAAAAAAAAATeNxdk/hatt2f/vb3/T3v/89cDZ9c2lyR+ratWt12mmnKT8/X47jKCkpSS+88IJGjhzZrIEAAAAAAAAAwK0OHTooKSmp2dtt8rl4N998s7p166b33ntPa9as0SmnnKJJkyY1eyAAAAAAAAAA++GEebLc/fffr5tvvlk//PBDs7bb5IrUNWvW6O2339bRRx8tSZo/f77S0tJUXFys5OTkZg0FAAAAAAAAAG4MHDhQlZWV6t69u+Lj4xUVVfd6IDt37nTVbpM7Unfu3KmOHTsGbqempiohIUE//fQTHakAAAAAAABASwnjGKkHQkXqBRdcoC1btuiuu+5SZmammYtNrVu3Tnl5eYHbjuPo66+/VklJSWBev379miUYAAAAAAAAAATrgw8+0KpVq9S/f/9mbTeojtRTTjlFjlO3W/r000+Xx+OR4zjyeDzy+XzNGhAAAAAAAADAXsI5lukBUJHap08fVVRUNHu7Te5I3bBhQ7M/OQAAAAAAAAA0p5kzZ+rGG2/UnXfeqSOPPHKfMVLdDlPa5I7ULl26uHqC1sKJ9cmJtbBattprOkFInBi/6QjuNc/wGcZEJVWbjuBaTWm06QghiU9p/l+9WkpNvL3bjSRpV6zpBO6VRDW+TCvlrbJ7h+lPsPD44L88frvXfVxamekIrlXG2v1Z5dTae4wZc4i9240kxcXUmI7gWq3f3u1GkiK99n438Tv27u/9xfYe40iS4uw9TkjMKDcdwRVfeZXpCHagInW/Ro0aJWn32fV7C/WM+qBO7QcAAAAAAACA1mzZsmUN3vfFF1+4bpeOVAAAAAAAAMAiHmf3FK62bTd8+PA6t0tKSvTss8/q8ccf15o1azRp0iRX7dp9bgYAAAAAAAAA1GPlypWaMGGCDjnkEN133306+eSTtXr1atftUZEKAAAAAAAA4ICQl5enJ598Uk888YSKi4t13nnnqaqqSq+++qr69u0bUtuuKlJra2v1j3/8Q48++qhKSkokSVu3blVpaWlIYQAAAAAAAADAjTPOOEO9e/fW559/rtmzZ2vr1q166KGHmq39oCtSf/jhB40aNUqbNm1SVVWVTj31VCUlJenuu+9WVVWV5s2b12zhAAAAAAAAAPyM898pXG1b6s0339TkyZN11VVXqVevXs3eftAVqdddd50GDhyoXbt2KS4uLjD/rLPO0tKlS5s1HAAAAAAAAAA0xXvvvaeSkhJlZ2dr8ODBevjhh1VQUNBs7Qddkfruu+/qgw8+UHR0dJ35Xbt21ZYtW5otWHPzRPvlifabjhE8v8d0gpA4Fv+K4Y20cHvZS01JdOMLtVKDD//edISQfLKxi+kIrjn5MaYjhMTTrtp0BNc8P9n7nk3v03wHJiZUVEeZjuBaWbnd79mqSnu3e391hOkIIYmMqzUdwbWqnXGNL9SKVXljTUdwrXv3fNMRQvKfDZmmI7hn8/eqpBrTEULiFNv7WVVWlmQ6giv+CnuPzVqSx9k9hattWw0ZMkRDhgzR7Nmz9fzzz2v+/PnKzc2V3+/XO++8o06dOikpyf17I+iKVL/fL5/Pt8/8H3/8MaQgAAAAAAAAABCqhIQEXXLJJXrvvff0xRdf6MYbb9TMmTOVkZGhM88803W7QXekjhgxQrNnzw7c9ng8Ki0t1bRp03Taaae5DgIAAAAAAACgiZwwTQeY3r1765577tGPP/6oZ599NqS2gj61//7779fIkSPVt29fVVZW6sILL9R3332ndu3ahRwGAAAAAAAAAJpbRESExowZozFjxrhuI+iO1I4dO+qzzz7Tc889p88//1ylpaW69NJLNW7cuDoXnwIAAAAAAAAQBuGsHj0Aq1KbS9AdqZIUGRmpX//6182dBQAAAAAAAABapSZ1pL7++utNbjCUAVsBAAAAAAAA7J/H2T2Fq23Ur0kdqU0dO8Dj8cjn84WSBwAAAAAAAABaHW9TFvL7/U2a6EQFAAAAAAAAwswJ8+TCnDlz1LVrV8XGxmrw4MH66KOPGlz2scce0/HHH682bdqoTZs2ysnJ2Wd5j8dT73Tvvfe6C9gMXI2RaiOnIkKOIkzHCFpCernpCCEp35xkOoJr/qRa0xFC4om194eND7/tZjpCSKLja0xHcK06yd7tRpIiIuw9B8WTWWk6gmtlVdGmI4SkdGe86QiueaPtfs86vib9pt8q2b7uayvt/RoQ3cbe/aUk1VTZu+43F6SajhCaWo/pBO5ZHD0lxe7vtEWmA4QgYkus6Qiu+CvtPT44mD3//PPKzc3VvHnzNHjwYM2ePVsjR47U+vXrlZGRsc/yy5cv1wUXXKBjjz1WsbGxuvvuuzVixAh99dVX6tChgyRp27ZtdR7z5ptv6tJLL9U555zTIq+pPq62zqVLl+r0009Xjx491KNHD51++un6xz/+0dzZAAAAAAAAAPzMnjFSwzUFa9asWbrssss0ceJE9e3bV/PmzVN8fLzmz59f7/LPPPOMrr76ag0YMEB9+vTR448/Lr/fr6VLlwaWycrKqjO99tprOumkk9S9e3e3qy1kQXekPvLIIxo1apSSkpJ03XXX6brrrlNycrJOO+00zZkzJxwZAQAAAAAAALSg4uLiOlNVVVW9y1VXV2vNmjXKyckJzPN6vcrJydGqVaua9Fzl5eWqqalRWlpavffn5+frjTfe0KWXXhr8C2lGQZ9Xctddd+mBBx7QpEmTAvMmT56s4447TnfddZeuueaaZg0IAAAAAAAAYC8hjGXapLYlderUqc7sadOmafr06fssXlBQIJ/Pp8zMzDrzMzMz9c033zTpKW+++Wa1b9++Tmfs3p566iklJSXp7LPPblJ74RJ0R2phYaFGjRq1z/wRI0bo5ptvbpZQAAAAAAAAAMzZvHmzkpOTA7djYmLC8jwzZ87Uc889p+XLlys2tv6xfefPn69x48Y1eH9LCfrU/jPPPFOvvPLKPvNfe+01nX766c0SCgAAAAAAAEADnDBPkpKTk+tMDXWktmvXThEREcrPz68zPz8/X1lZWft9Gffdd59mzpypt99+W/369at3mXfffVfr16/Xb37zm/221RKCrkjt27ev7rzzTi1fvlxDhw6VJK1evVrvv/++brzxRj344IOBZSdPntx8SQEAAAAAAAC0KtHR0crOztbSpUs1ZswYSQpcOGrvoUF/7p577tGdd96pt956SwMHDmxwuSeeeELZ2dnq379/c0cPWtAdqU888YTatGmjdevWad26dYH5qampeuKJJwK3PR4PHakAAAAAAABAM/M4u6dwtR2s3NxcTZgwQQMHDtSgQYM0e/ZslZWVaeLEiZKk8ePHq0OHDpoxY4Yk6e6779bUqVO1aNEide3aVXl5eZKkxMREJSYmBtotLi7Wiy++qPvvvz/0F9YMgu5I3bBhQzhyhF1kYo288RGmYwStsiLadISQ9O3/g+kIrn31fQfTEULijQjXqNPh5ysNetfUqngTq01HcM1bZt9+cm/+GJ/pCK5lphebjuDa9oLkxhdqxbzR9m43aW3KTEcIic/vMR3BteKSeNMRQhKfUmE6gmsVpeEZn62leKP8piO4VlsZZTpCSKLTKk1HcK261N7vhbt2JJmOEJLDe2wxHcG1df5DTEdwxV9R/5Xh0bqNHTtWO3bs0NSpU5WXl6cBAwZoyZIlgQtQbdq0SV7v/0YYnTt3rqqrq3XuuefWaefnF7R67rnn5DiOLrjgghZ5HY2xu7cCAAAAAAAAONjsNZZpWNp2YdKkSQ2eyr98+fI6tzdu3NikNi+//HJdfvnl7gKFQdAdqY7j6K9//auWLVum7du3y++v+4vqyy+/3GzhAAAAAAAAAKA1CLoj9frrr9ejjz6qk046SZmZmfJ47D0lCwAAAAAAALBOK6xIPRgE3ZH69NNP6+WXX9Zpp50WjjwAAAAAAAAA0OoE3ZGakpKi7t27hyMLAAAAAAAAgEZ4nN1TuNpG/byNL1LX9OnTddttt6miwt4rfQIAAAAAAABAMIKuSD3vvPP07LPPKiMjQ127dlVUVFSd+z/99NNmCwcAAAAAAADgZxgj1YigO1InTJigNWvW6Ne//jUXmwIAAAAAAABwUAi6I/WNN97QW2+9pWHDhoUjT9h4I/zyRvhNxwhadUm06QghWb8103QE15LblpmOEJKk2CrTEVzbUtLOdISQVP4UZzqCa8ldi0xHCElFhb37zPIqe7OntbF7f2mzyAif6QghSYypNR3BtQiv3aUahyQVm47g2jc1GaYjhMRXE2E6gmtxSZWmI4Qk0sLvg3t0bbfTdATXvvvR7vfspsJU0xFcS7X0GM0XU6XNpkNYgDFSzQh6jNROnTopOTk5HFkAAAAAAAAAoFUKuiP1/vvv1+9+9ztt3LgxDHEAAAAAAAAA7JcT5gn1CvrU/l//+tcqLy9Xjx49FB8fv8/FpnbutPeUAwAAAAAAAACoT9AdqbNnzw5DDAAAAAAAAABNEs7KUSpSGxR0R+qECRPCkQMAAAAAAAAAWq2gO1L3VllZqerq6jrzuBAVAAAAAAAAED6e/07hahv1C/piU2VlZZo0aZIyMjKUkJCgNm3a1JkAAAAAAAAA4EATdEXq7373Oy1btkxz587VRRddpDlz5mjLli169NFHNXPmzHBkbBZJCVWKiDedInilXrsHpoiM9JmO4Fp5eYzpCCHx+YP+naTV8CbUmI4QkrQ2ZaYjuFZeFdX4Qq1YbU2E6QiulealmI7gmiez0nSEkMTFVTe+UCtVvivBdISQHJJeZDqCawV5dp+F1Sl5l+kIrqUll5uOEJJdJRZ+KfmvasuPE5JSS01HcO0/+e1MRzhoxUbVmo7gms9vZ12hx2N3P0iLYYxUI4LuSF28eLEWLlyoE088URMnTtTxxx+vnj17qkuXLnrmmWc0bty4cOQEAAAAAAAAAGOCLlnbuXOnunfvLmn3eKg7d+6UJA0bNkwrV65s3nQAAAAAAAAA6vA44Z1Qv6A7Urt3764NGzZIkvr06aMXXnhB0u5K1dTU1GYNBwAAAAAAAACtQdAdqRMnTtRnn30mSbrllls0Z84cxcbG6oYbbtBNN93U7AEBAAAAAAAA7MUJ84R6BT1G6g033BD4f05Ojr7++mt9+umn6tmzp/r169es4QAAAAAAAACgNQi6I/Xnunbtqq5duzZDFAAAAAAAAABNQuVoi2vyqf2rVq3S3/72tzrzFi5cqG7duikjI0OXX365qqqqmj0gAAAAAAAAAJjW5I7U22+/XV999VXg9hdffKFLL71UOTk5uuWWW7R48WLNmDEjLCEBAAAAAAAA7OZxwjuhfk0+tX/t2rW64447Arefe+45DR48WI899pgkqVOnTpo2bZqmT5/e7CGbw65d8fJWxZqOEbShPTaYjhCSfxe2Mx3BNY/le46ampBH7jAmNbXMdISQ+Pwe0xFci4jwm44Qksgon+kI7mVVmE7gnuX7y15td5iO4NrXtVmmI4Sk1h/0dU9bDW+sxfsbSd9szzQdwbVDUotNRwhJfmmq6QiuZR5SaDpCSFJiKk1HcM2fYu/xZZtYi49xJP1YmGI6gmtHZm0zHcGVmphqfWE6BNCAJve07Nq1S5mZ/zvgWrFihUaPHh24fcwxx2jz5s3Nmw4AAAAAAABAXY7CN0aq3XUSYdXkMoDMzExt2LC7OrK6ulqffvqphgwZEri/pKREUVFRzZ8QAAAAAAAAAAxrckfqaaedpltuuUXvvvuupkyZovj4eB1//PGB+z///HP16NEjLCEBAAAAAAAA7MYYqWY0+dT+O+64Q2effbaGDx+uxMREPfXUU4qOjg7cP3/+fI0YMSIsIQEAAAAAAADApCZ3pLZr104rV65UUVGREhMTFRERUef+F198UYmJic0eEAAAAAAAAMBeGCPViKAv652SUv8V69LS0kIOAwAAAAAAAACtUdAdqQAAAAAAAADMCedYpoyR2rCDpiPVKYmWUxvd+IKtzL8L25mOEJKkmCrTEVzLz6+/+toWnnJ73941bSIaX6gV8xXZt6/Z49BDt5qOEJLNtammI7jWLqnMdATXtv5k9/5yw662piO4lplSYjpCSGr9Tb7uaauT3XWT6QghWbOxs+kIrm3abveZcKntSk1HcK2qxt7jS0kq8MWbjuBaalyl6QiuFVfHmI4Qkppqe7f7jUV27i99Zfb2I+DA12qOXmfOnCmPx6Prr78+MK+yslLXXHON2rZtq8TERJ1zzjnKz883FxIAAAAAAAAwzQnzhHq1io7Ujz/+WI8++qj69etXZ/4NN9ygxYsX68UXX9SKFSu0detWnX322YZSAgAAAAAAADhYGe9ILS0t1bhx4/TYY4+pTZs2gflFRUV64oknNGvWLJ188snKzs7WggUL9MEHH2j16tUNtldVVaXi4uI6EwAAAAAAAHDAoCLVCOMdqddcc41+8YtfKCcnp878NWvWqKamps78Pn36qHPnzlq1alWD7c2YMUMpKSmBqVOnTmHLDgAAAAAAAODgYLQj9bnnntOnn36qGTNm7HNfXl6eoqOjlZqaWmd+Zmam8vLyGmxzypQpKioqCkybN29u7tgAAAAAAACAMR4nvBPqZ+zyc5s3b9Z1112nd955R7Gxsc3WbkxMjGJi7L4qIAAAAAAAAIDWxVhF6po1a7R9+3YdffTRioyMVGRkpFasWKEHH3xQkZGRyszMVHV1tQoLC+s8Lj8/X1lZWWZCAwAAAAAAAKYxRqoRxipSTznlFH3xxRd15k2cOFF9+vTRzTffrE6dOikqKkpLly7VOeecI0lav369Nm3apKFDh5qIDAAAAAAAAOAgZawjNSkpSUcccUSdeQkJCWrbtm1g/qWXXqrc3FylpaUpOTlZ1157rYYOHaohQ4YE/Xw9e29RZIJ9p/xX1kaZjhCSY9v9x3QE137cmWo6QkgiUytMR3AtI6nUdISQeDPt/fluS1GK6QghqSixbz+/R2LbnaYjuBYbW2M6QkhS4+3dXxaWx5mOEJLiYnvz27un3y09rcR0BNfiouze59T4IkxHOGilxtq7v7f5GC0ywm86QkhiLD7O8Tse0xFc8cvO3C3N4zjyOOE5IglXuwcCYx2pTfHAAw/I6/XqnHPOUVVVlUaOHKlHHnnEdCwAAAAAAAAAB5lW1ZG6fPnyOrdjY2M1Z84czZkzx0wgAAAAAAAAoLUJ51imFKQ2yNjFpgAAAAAAAADAFq2qIhUAAAAAAADA/nmc3VO42kb9qEgFAAAAAAAAgEZQkQoAAAAAAADYhDFSjaAiFQAAAAAAAAAacdBUpP5YmKqI6hjTMYKWlVJiOkJIVhd0Mx3BtdjoGtMRQpIaX2E6gmvbSxJNRwhJbFSt6QiuDcjaYjpCSD6u6Ww6gmtHpm41HcG14qpY0xFC4vPb+7vy0Zk/mo4QkhVlPU1HcC0lptJ0hJBsKGhrOoJrkUl+0xFCsmWTvev+xH7fmI4Qkne/t3efM6jrRtMRXIuJsPfYWJJWb+5qOoJrx3e28z1bVVqjtaZDWIAxUs2w95sDAAAAAAAAALSQg6YiFQAAAAAAADggMEaqEVSkAgAAAAAAAEAjqEgFAAAAAAAALMIYqWZQkQoAAAAAAAAAjaAiFQAAAAAAALAJY6QaQUUqAAAAAAAAADSCilQAAAAAAADAMoxl2vIOmo7UzOQSRSZUm44RtM6Ju0xHCMnGkjTTEVzzev2mI4RkZ1m86QiudWlj93Y/OuNL0xFcW/ZTb9MRQuKx+EjivfzupiO4Vl1r9+FEalyF6QiuffHTIaYjhCQqymc6gmuJUVWmI4TksMw80xFc+2qb3dt99+75piO49lNVgukIIWnXpsR0BNd+LE01HcG1ghK7t5uICHu/F64vyTQdwZWaMvv6bnDw4NR+AAAAAAAAwCaOE97JhTlz5qhr166KjY3V4MGD9dFHHzW47GOPPabjjz9ebdq0UZs2bZSTk1Pv8l9//bXOPPNMpaSkKCEhQcccc4w2bdrkKl9zoCMVAAAAAAAAgGvPP/+8cnNzNW3aNH366afq37+/Ro4cqe3bt9e7/PLly3XBBRdo2bJlWrVqlTp16qQRI0Zoy5YtgWW+//57DRs2TH369NHy5cv1+eef69Zbb1VsbGxLvax92H0uHgAAAAAAAHCQ8TjhGyPVTbuzZs3SZZddpokTJ0qS5s2bpzfeeEPz58/XLbfcss/yzzzzTJ3bjz/+uF566SUtXbpU48ePlyT9/ve/12mnnaZ77rknsFyPHj2CD9eMqEgFAAAAAAAAUEdxcXGdqaqq/jHiq6urtWbNGuXk5ATmeb1e5eTkaNWqVU16rvLyctXU1Cgtbfe1dvx+v9544w0deuihGjlypDIyMjR48GC9+uqrIb+uUNCRCgAAAAAAANjECfMkqVOnTkpJSQlMM2bMqDdKQUGBfD6fMjPrXuAsMzNTeXlNu8DlzTffrPbt2wc6Y7dv367S0lLNnDlTo0aN0ttvv62zzjpLZ599tlasWNGkNsOBU/sBAAAAAAAA1LF582YlJycHbsfExITleWbOnKnnnntOy5cvD4x/6vf7JUm//OUvdcMNN0iSBgwYoA8++EDz5s3T8OHDw5KlMXSkAgAAAAAAABbx+HdP4WpbkpKTk+t0pDakXbt2ioiIUH5+fp35+fn5ysrK2u9j77vvPs2cOVP/+Mc/1K9fvzptRkZGqm/fvnWWP+yww/Tee+818ZU0v4OmIzU2slZRkfaNZBAZrndFCxnU7gfTEVzbVtn4zqI18zv2be97lNdGmY4Qko2V7UxHcM3veExHCIljcf5uyTtNR3BtXUFm4wu1YnGRNaYjuFYVafeh3M6aCNMRXPOG6+oOLaSsJjwVJS3BsXvVq3dK/VcvtkFhdZzpCCHplWnvuv+q6BDTEVw7uctW0xFCsrM63nQE17629BjNV17/OJxovaKjk7wfHwAAJWBJREFUo5Wdna2lS5dqzJgxknZXlC5dulSTJk1q8HH33HOP7rzzTr311lsaOHDgPm0ec8wxWr9+fZ353377rbp06dLsr6Gp7D76BgAAAAAAAA42e41lGpa2g5Sbm6sJEyZo4MCBGjRokGbPnq2ysjJNnDhRkjR+/Hh16NAhMM7q3XffralTp2rRokXq2rVrYCzVxMREJSYmSpJuuukmjR07VieccIJOOukkLVmyRIsXL9by5cub5WW6QUcqAAAAAAAAANfGjh2rHTt2aOrUqcrLy9OAAQO0ZMmSwAWoNm3aJK/3f2fOzp07V9XV1Tr33HPrtDNt2jRNnz5dknTWWWdp3rx5mjFjhiZPnqzevXvrpZde0rBhw1rsdf0cHakAAAAAAACARTzO7ilcbbsxadKkBk/l/3kV6caNG5vU5iWXXKJLLrnEXaAwsHcQRQAAAAAAAABoIVSkAgAAAAAAADZxnPBdgdH2KzuGERWpAAAAAAAAANAIKlIBAAAAAAAAi7TGMVIPBlSkAgAAAAAAAEAjDpqKVJ/fI4/fvn7j1Khy0xFCUlCVaDqCa4fEFpuOEJKVeT1MR3DtiLQ80xFC8vamPqYjuJYUW2U6QkhO6Pq96Qiu1Tr2fUbt0TGlyHSEkBzf9jvTEVx7Y+uRpiOE5IgO20xHcO2H4jamI4TkhCx795e221Rm77aTHltqOkJIPtjezXQE13ql7jAd4f/bu/foqOq73+OfyZBMEnInN1LCXS4qFw02UNF6SQk8z+GU4qVSFgpLPV0ItBiw1a5K8NKKlmWrFbDVAtqjgPapdtlWtIcSLDygAkVFASHlKiRAaK7kOrPPH+g8jCQM7O3kl528X2vttcjMZs97sjKZ4cd39th2sqm76QRHYqJaTCfY1t3XZDrBlpYWd3a3O+vzLVLHRqvc+682AAAAAAAAAGgnXWYiFQAAAAAAAOgMOEeqGUykAgAAAAAAAEAYTKQCAAAAAAAAbmJZZ7ZIHRutYiIVAAAAAAAAAMJgIhUAAAAAAABwEc6RagYTqQAAAAAAAAAQBhOpAAAAAAAAgJtYn2+ROjZa1WUWUhv93eT3u+/u7q3JNJ3gyKVJx0wn2PbqritNJzhybf99phNs21uVYTrBkYLcPaYTbNtb6+7fORWN8aYTbGuxvKYTbKtsiDOd4MhzH401nWDb9QM+NZ3gSJy32XSCbfHdmkwnOLKnOst0gm1Z8dWmExxJcPHPzvGGBNMJjuSlHzGdYFv3bo2mE2z7qDLHdIIjY3uUmk6w7Xh9oukEW1qa3fvzjs7PfSuLAAAAAAAAQBfGOVLN4BypAAAAAAAAABAGE6kAAAAAAACAmwSsM1ukjo1WMZEKAAAAAAAAAGEwkQoAAAAAAAC4ifX5Fqljo1VMpAIAAAAAAABAGEykAgAAAAAAAC7ikeSJ0OSoJzKH7RRYSO3gUn2nTSc40mx5TSfYNiL3iOmELiuvxyHTCY4kdWswnWDb4coU0wmOFOTuMZ1gW2VzvOkE2+pbok0nOHJpTpnpBNtyfFWmExz5Z2Wu6QTbukX5TSc4crQ2yXSCbSN6ufs12pH6VNMJtn0j9V+mExzxu3hp4LNG9/7cFGTsNp3gSI0/1nSCbWPTS00n2NIQ26z1piOANrCQCgAAAAAAALiJZZ3ZInVstIpzpAIAAAAAAABAGEykAgAAAAAAAC7isSJ4jlQGUtvERCoAAAAAAAAAhMFEKgAAAAAAAOAm1udbpI6NVjGRCgAAAAAAAABhMJEKAAAAAAAAuIjHsuSxIjM6GqnjdgZMpAIAAAAAAABAGF1mIjXFV69on990xkVL7NZgOsGRyuZ40wm2Rbn8Y+rc3H+iKcF0giO7qrNNJ9g2Musz0wmObCzvbzrBtq8lVJlOsM3nbTGd4Mh/ZH5kOsG2z5pSTSc48llNsukE2zK615pOcCQ7ocZ0gm3vHB9oOsGRnvHVphNs21HTy3SCI0O6l5tOsG3rid6mE2w7ENfDdIIjfRMqTCfY9jXfv00n2GJFufu1ZbsJfL5F6thoFROpAAAAAAAAABBGl5lIBQAAAAAAADoDzpFqBhOpAAAAAAAAABAGE6kAAAAAAACAm1ifb5E6NlrFRCoAAAAAAAAAhMFEKgAAAAAAAOAmlnVmi9Sx0SomUgEAAAAAAAAgjC4zkRrj9Sva6zedcdF8US2mExyp98eYTrAtYHlMJzjSL+6k6QTb1h0fbDrBkWGpR00n2FbWkGQ6wZHJuTtMJ9h2ia/cdIJtexp6mk5w5J1/DzKdYFt5faLpBEdyk/5tOsG2/535gekER/7+7yGmE2y7rsenphMc6RVTYTrBtm11/UwnOLKjupfpBNtGZRwynWBbarfTphMcifa4bx3hC6v+Ncp0gi3+042S1pnO6PA81pktUsdG65hIBQAAAAAAAIAwusxEKgAAAAAAANApcI5UI5hIBQAAAAAAAIAwmEgFAAAAAAAAXMQTOLNF6thoHROpAAAAAAAAABAGE6kAAAAAAACAm3COVCOYSAUAAAAAAACAMJhIBQAAAAAAANzE+nyL1LHRKqMLqQsXLtRDDz0UctngwYO1e/duSVJDQ4PmzZun1atXq7GxUYWFhVq6dKmysrIu+rb6xlXIFx/9lXS3p/LGJNMJjqT7ak0n2DYw/rjpBEeaLa/pBNuuzdhnOsGR/O6lphNs+5suM53gyEc1XzOdYJvXxa9W0rvVmE5w5NKEY6YTbOsZW2U6wZG9NZmmE2zbVHWJ6QRHDlT3MJ1gW0HqJ6YTHDnYlG46ocvKdPG/TS6NP2o6wbb/Onql6QRHLk9x7/f+quxDphNsaapt0k7TEUAbjL+1/7LLLtOxY8eC28aNG4PX3XvvvXrjjTf06quvasOGDTp69KgmT55ssBYAAAAAAAAwy2NZEd3QOuNv7e/WrZuys7PPubyqqkq/+93v9PLLL+uGG26QJK1YsUJDhw7Vli1bNHr06PZOBQAAAAAAANBFGZ9I3bt3r3JyctS/f39NnTpVhw6dGT3ftm2bmpubVVBQENx3yJAh6t27tzZv3tzm8RobG1VdXR2yAQAAAAAAAJ2GZUV2Q6uMLqTm5+dr5cqVWrt2rZYtW6b9+/frmmuuUU1NjcrKyhQTE6OUlJSQv5OVlaWysrI2j/nYY48pOTk5uOXm5kb4XgAAAAAAAADo7Iy+tX/ChAnBPw8fPlz5+fnq06ePXnnlFcXFxdk65gMPPKCioqLg19XV1SymAgAAAAAAoPOwJAUieGy0yvhb+8+WkpKiQYMGad++fcrOzlZTU5MqKytD9ikvL2/1nKpf8Pl8SkpKCtkAAAAAAAAAwIkOtZBaW1ur0tJS9ezZU3l5eYqOjta6deuC1+/Zs0eHDh3SmDFjDFYCAAAAAAAA5ngsK6IbWmf0rf3z58/XxIkT1adPHx09elTFxcXyer2aMmWKkpOTdeedd6qoqEhpaWlKSkrSnDlzNGbMGI0ePfqib+tkU4JimmIicC8iq87vvuYQjQmmC2zbU51lOsGRAQknTCfYdqLJvT83ktQzptJ0gm3lje6e4h+RdNh0gm3bq3ubTrAtOspvOsGRI3UpphNsS4xuMJ3gSFacez8UNNvn3nZJikqN1HsBI+/j+l6mE7qsYw3ufp2QFnPadIJtpQ2ZphNsm5C903SCIx/VuPd3TlVzrOkEW5qbok0nAG0yupB65MgRTZkyRRUVFcrIyNDYsWO1ZcsWZWRkSJJ++ctfKioqSjfddJMaGxtVWFiopUuXmkwGAAAAAAAAzLIkRWpylIHUNhldSF29evV5r4+NjdWSJUu0ZMmSdioCAAAAAAAAgHMZXUgFAAAAAAAAcJEsK4ITqYyktqVDfdgUAAAAAAAAAPdZsmSJ+vbtq9jYWOXn5+u9995rc9/nnntO11xzjVJTU5WamqqCgoJz9p8+fbo8Hk/INn78+EjfjfNiIRUAAAAAAABwk0CEt4u0Zs0aFRUVqbi4WNu3b9eIESNUWFio48ePt7p/SUmJpkyZovXr12vz5s3Kzc3VuHHj9Nlnn4XsN378eB07diy4rVq16uLjvkIspAIAAAAAAAAIUV1dHbI1Nja2ue+TTz6pu+++WzNmzNCll16qZ599VvHx8Vq+fHmr+7/00ku65557NHLkSA0ZMkTPP/+8AoGA1q1bF7Kfz+dTdnZ2cEtNTf1K7+PFYiEVAAAAAAAAcBGPZUV0k6Tc3FwlJycHt8cee6zVlqamJm3btk0FBQXBy6KiolRQUKDNmzdf0P05ffq0mpublZaWFnJ5SUmJMjMzNXjwYM2cOVMVFRU2v2NfDT5sCgAAAAAAAECIw4cPKykpKfi1z+drdb+TJ0/K7/crKysr5PKsrCzt3r37gm7rxz/+sXJyckIWY8ePH6/JkyerX79+Ki0t1U9+8hNNmDBBmzdvltfrtXGPnOsyC6llDUmK9saYzrhoV6UeNJ3gSLy37bHvjq42LtZ0giN58ftNJ9j2eKnZk0c79c2UT00n2DYkocx0giMfVOeaTrDt/2SXmE6wbemxG0wnODIu6xPTCbYdrE83neBItq/KdIJtvWJOmU5wpKIpwXSCbfX+aNMJjvSIrjOdYNveygzTCY4MSW39PH1uMCa51HSCbf+vYqjpBEe+l/Wu6QTbKv3xphNsqY9r0Z9NR7iBZZ3ZInVsSUlJSSELqZGyaNEirV69WiUlJYqN/Z+1mNtuuy3452HDhmn48OEaMGCASkpKdOONN0a8qzW8tR8AAAAAAACALenp6fJ6vSovLw+5vLy8XNnZ2ef9u4sXL9aiRYv09ttva/jw4efdt3///kpPT9e+ffscN9vFQioAAAAAAADgJl9MpEZquwgxMTHKy8sL+aCoLz44asyYMW3+vSeeeEKPPPKI1q5dq1GjRoW9nSNHjqiiokI9e/a8qL6vEgupAAAAAAAAAGwrKirSc889pxdeeEG7du3SzJkzVVdXpxkzZkiSbr/9dj3wwAPB/R9//HE9+OCDWr58ufr27auysjKVlZWptrZWklRbW6v77rtPW7Zs0YEDB7Ru3Tp9+9vf1sCBA1VYWGjkPkpd6BypAAAAAAAAQKfQDudIvRjf/e53deLECS1YsEBlZWUaOXKk1q5dG/wAqkOHDikq6n/mOZctW6ampibdfPPNIccpLi7WwoUL5fV69eGHH+qFF15QZWWlcnJyNG7cOD3yyCNtfuhVe2AhFQAAAAAAAIAjs2fP1uzZs1u9rqSkJOTrAwcOnPdYcXFxeuutt76isq8OC6kAAAAAAACAmwQkeSJ4bLSKc6QCAAAAAAAAQBhdZiL1jp7/rfhEr+mMi/avxkzTCY5EefhvDFNO+RNMJ9h2R58tphMcyY6uNJ3QZQ1NP2o6wbZKf7zpBNsGdj9hOsGRk82JphNs696t0XSCI37Lvf+n7+Z2yd2v0QbHl5lOcCQ3usJ0gn05pgOcKUjcaTrBNq8idB7EdnBj7qemExzZVN/XdIJtBxvTTSfY0tjYbDrBFTyWJU+EzpEaqeN2Bu5+BQgAAAAAAAAA7aDLTKQCAAAAAAAAnYJlndkidWy0iolUAAAAAAAAAAiDiVQAAAAAAADATQKW5InQ5GiAidS2MJEKAAAAAAAAAGEwkQoAAAAAAAC4CedINYKJVAAAAAAAAAAIg4lUAAAAAAAAwFUiOJEqJlLb0mUWUk/4ExXX4r67ezoQYzrBkYG+ctMJtl0V9y/TCY5srBtsOsE2v+XuYfkhvqOmE2yLjTlhOsGRraf7m06wzc0/91/vXmo6wZFT/gTTCbaVNyebTnAkvVuN6QTbukc1mk5w5PLun5lOsK0xEG06wZF/nu5rOsG2E02JphMceff0QNMJtt2Z8rHpBNs2N/QwneDINXEHTCfY5o3UBxFFWH1Li+kEoE3uW1kEAAAAAAAAujLOkWqEe8dfAAAAAAAAAKCdMJEKAAAAAAAAuEnAUsTOZRpgIrUtTKQCAAAAAAAAQBhMpAIAAAAAAABuYgXObJE6NlrFRCoAAAAAAAAAhMFEKgAAAAAAAOAmlnVmi9Sx0aous5Ca5a1SfDev6YyL1my5r/ls8VGNphNsW3niGtMJjvxn2gemE2zbWd/LdIIjlf540wm27WvMNp3gSHxUk+kE26I87n37zFW+46YTHFlRmWs6wba7UrebTnDk76fd+/u+LuAzneDIcN9h0wm2bWvoazrBkdtT3jOdYNtbdYNNJziSHV1lOsG2B8uuNZ1gW27sKdMJjvxXxSjTCbaNTio1nWBLQ8BjOgFoU5dZSAUAAAAAAAA6hYAlKUKTowEmUtvCOVIBAAAAAAAAIAwmUgEAAAAAAAA34RypRjCRCgAAAAAAAABhMJEKAAAAAAAAuImlCE6kRuawnQETqQAAAAAAAAAQBhOpAAAAAAAAgJtwjlQjmEgFAAAAAAAAgDC6zETqkZY0xTW77+5mdKs2neBIs+W+7/kX/jPtA9MJXdYV8QdMJ3RZhQkfm05wpCIQZzrBts11l5hOsO2Dph6mExwZEX/QdIJt/6jvaTrBkV0NOaYTbPt691LTCY7saOhtOsG2kbHufcxK0rsNuaYTbKvyx5tOcKS0IdN0gm0Fye59jdY3+pTpBEdyoitNJ9j2v7ofMZ1gS7UC+qHpCDcIBCQFInhstIaJVAAAAAAAAAAIw73jggAAAAAAAEBXxDlSjWAiFQAAAAAAAADCYCIVAAAAAAAAcBMmUo1gIhUAAAAAAAAAwmAiFQAAAAAAAHCTgCUpQpOjASZS28JEKgAAAAAAAACE0WUmUr0KyKuA6YyLtr8x03RCl5XgbTCd4MislMOmE2z7y+lY0wmObK69xHSCbYlJH5lOcORoc6rpBNsuj3PvY7bJ8ppOcOR0wGc6wbaDTemmExy5NXmr6QTbXqkaZTrBkahITbC0gwYr2nSCIznR/zadYFu0x286wZHpaf9tOsG2n332H6YTbLsk4bjpBEeu7v6p6QTbNja487Xx6Qa/pGOmMzo8ywrIsiKzzhWp43YGTKQCAAAAAAAAQBhdZiIVAAAAAAAA6BQsK3LnMrXc+86VSGMiFQAAAAAAAADCYCIVAAAAAAAAcBPLkiJ1znMmUtvERCoAAAAAAAAAhMFEKgAAAAAAAOAmgYDkCUTm2FaEjtsJMJEKAAAAAAAAAGEwkQoAAAAAAAC4CedINaLLLKTWB3yyAu67uwN95aYTHPlm3DHTCbadcvkk+7EW9/7iGxZTazrBkZ3eXNMJtu1uzDGd4Mihxh6mE2y7PvET0wm27W5y989NrKfZdIJt3+y+23SCI3ubM0wn2FbVEmc6wZEfppeYTrBtu8ufq/7V5N6f+2GxR0wnOJIY5TedYNuS3n8xnWDb/60eajqhy8rw1phOsKXO6/J/jKNTc9/KIgAAAAAAANCFWYGArAidI9XiHKlt4hypAAAAAAAAABAGE6kAAAAAAACAm3COVCOYSAUAAAAAAACAMJhIBQAAAAAAANwkYEkeJlLbGxOpAAAAAAAAABAGE6kAAAAAAACAm1iWpEAEj43WdJmF1LioRsVF+U1nXDS/PKYTHKkKuPfBd6A51XSCI7FRzaYTbFtXc5npBEd6x1SYTrCtR7da0wmOdI9qNJ1gW6zHvY/ZIb6jphMcSYmqN51gW463yXSCI9Ee9702+8Kvem41neDIoRbTBfatrxpqOsGRjJga0wm2jXDxaxxJivW49w2Ze5p9phNsi3fx6zNJOtCcYTrBtpRAnekEW043+yUdNp0BtKrLLKQCAAAAAAAAnYEVsGRF6BypFhOpbXLvf8kBAAAAAAAAQDthIhUAAAAAAABwEyugyJ0jNULH7QSYSAUAAAAAAACAMJhIBQAAAAAAAFyEc6SawUQqAAAAAAAAAITBRCoAAAAAAADgJpwj1YhOv5D6xThyQ22L4RJ7Tnv9phMcqW1y74Ovrtnd33t/lHu/9421zaYTHKmPcefvG8n9v3PqLfd+7+u6ufcx22C5++emm4t/X9Z43dsuSbV+9/ZXu/g1jiTVtLi3v8nlrxMaY9zbX+Pi5ypJavaYLrCvrtm93/v6Jve+PpMkv4vfyBsT5c7XaPW1Z7p5e/n5tahZitC3qEXufa6KNI/VyX8yjxw5otzcXNMZAAAAAAAAuECHDx9Wr169TGd0OA0NDerXr5/KysoiejvZ2dnav3+/YmNjI3o7btPpF1IDgYCOHj2qxMREeTxf/X9BVldXKzc3V4cPH1ZSUtJXfnwAXy0es4C78JgF3IXHLOAuPGbREVmWpZqaGuXk5Cgqyr0TwZHU0NCgpqamiN5GTEwMi6it6PRv7Y+KimqX/8FISkriiQdwER6zgLvwmAXchccs4C48ZtHRJCcnm07o0GJjY1nkNISlfQAAAAAAAAAIg4VUAAAAAAAAAAiDhVSHfD6fiouL5fP5TKcAuAA8ZgF34TELuAuPWcBdeMwCwMXp9B82BQAAAAAAAABOMZEKAAAAAAAAAGGwkAoAAAAAAAAAYbCQCgAAAAAAAABhsJAKAAAAAAAAAGGwkOrAkiVL1LdvX8XGxio/P1/vvfee6SQArVi4cKE8Hk/INmTIENNZAM7yzjvvaOLEicrJyZHH49Hrr78ecr1lWVqwYIF69uypuLg4FRQUaO/evWZiAYR9zE6fPv2c597x48ebiQWgxx57TFdddZUSExOVmZmpSZMmac+ePSH7NDQ0aNasWerRo4cSEhJ00003qby83FAxAHRMLKTatGbNGhUVFam4uFjbt2/XiBEjVFhYqOPHj5tOA9CKyy67TMeOHQtuGzduNJ0E4Cx1dXUaMWKElixZ0ur1TzzxhJ5++mk9++yzevfdd9W9e3cVFhaqoaGhnUsBSOEfs5I0fvz4kOfeVatWtWMhgLNt2LBBs2bN0pYtW/S3v/1Nzc3NGjdunOrq6oL73HvvvXrjjTf06quvasOGDTp69KgmT55ssBoAOh6PZVmW6Qg3ys/P11VXXaVnnnlGkhQIBJSbm6s5c+bo/vvvN1wH4GwLFy7U66+/rh07dphOAXABPB6PXnvtNU2aNEnSmWnUnJwczZs3T/Pnz5ckVVVVKSsrSytXrtRtt91msBbAlx+z0pmJ1MrKynMmVQF0DCdOnFBmZqY2bNiga6+9VlVVVcrIyNDLL7+sm2++WZK0e/duDR06VJs3b9bo0aMNFwNAx8BEqg1NTU3atm2bCgoKgpdFRUWpoKBAmzdvNlgGoC179+5VTk6O+vfvr6lTp+rQoUOmkwBcoP3796usrCzkeTc5OVn5+fk87wIdWElJiTIzMzV48GDNnDlTFRUVppMAfK6qqkqSlJaWJknatm2bmpubQ55rhwwZot69e/NcCwBnYSHVhpMnT8rv9ysrKyvk8qysLJWVlRmqAtCW/Px8rVy5UmvXrtWyZcu0f/9+XXPNNaqpqTGdBuACfPHcyvMu4B7jx4/Xiy++qHXr1unxxx/Xhg0bNGHCBPn9ftNpQJcXCAQ0d+5cXX311br88sslnXmujYmJUUpKSsi+PNcCQKhupgMAINImTJgQ/PPw4cOVn5+vPn366JVXXtGdd95psAwAgM7p7FNuDBs2TMOHD9eAAQNUUlKiG2+80WAZgFmzZmnnzp18ZgAA2MBEqg3p6enyer3nfIJheXm5srOzDVUBuFApKSkaNGiQ9u3bZzoFwAX44rmV513Avfr376/09HSeewHDZs+erT//+c9av369evXqFbw8OztbTU1NqqysDNmf51oACMVCqg0xMTHKy8vTunXrgpcFAgGtW7dOY8aMMVgG4ELU1taqtLRUPXv2NJ0C4AL069dP2dnZIc+71dXVevfdd3neBVziyJEjqqio4LkXMMSyLM2ePVuvvfaa/v73v6tfv34h1+fl5Sk6OjrkuXbPnj06dOgQz7UAcBbe2m9TUVGR7rjjDo0aNUpf//rX9atf/Up1dXWaMWOG6TQAXzJ//nxNnDhRffr00dGjR1VcXCyv16spU6aYTgPwudra2pBJtf3792vHjh1KS0tT7969NXfuXD366KO65JJL1K9fPz344IPKyckJ+ZRwAO3nfI/ZtLQ0PfTQQ7rpppuUnZ2t0tJS/ehHP9LAgQNVWFhosBroumbNmqWXX35Zf/rTn5SYmBg872lycrLi4uKUnJysO++8U0VFRUpLS1NSUpLmzJmjMWPGaPTo0YbrAaDj8FiWZZmOcKtnnnlGv/jFL1RWVqaRI0fq6aefVn5+vuksAF9y22236Z133lFFRYUyMjI0duxY/exnP9OAAQNMpwH4XElJia6//vpzLr/jjju0cuVKWZal4uJi/fa3v1VlZaXGjh2rpUuXatCgQQZqAZzvMbts2TJNmjRJ//znP1VZWamcnByNGzdOjzzyyDkfGgegfXg8nlYvX7FihaZPny5Jamho0Lx587Rq1So1NjaqsLBQS5cu5a39AHAWFlIBAAAAAAAAIAzOkQoAAAAAAAAAYbCQCgAAAAAAAABhsJAKAAAAAAAAAGGwkAoAAAAAAAAAYbCQCgAAAAAAAABhsJAKAAAAAAAAAGGwkAoAAAAAAAAAYbCQCgAAAAAAAABhsJAKAABwgaZPn65JkyYZu/1p06bp5z//ubHbv1hr167VyJEjFQgETKcAAAAAjrGQCgAAIMnj8Zx3W7hwoZ566imtXLnSSN8HH3ygv/71r/rBD34QvOy6667T3Llzz9l35cqVSklJab+4NowfP17R0dF66aWXTKcAAAAAjnUzHQAAANARHDt2LPjnNWvWaMGCBdqzZ0/wsoSEBCUkJJhIkyT9+te/1i233GK04WyWZcnv96tbt/O/nJw+fbqefvppTZs2rZ3KAAAAgMhgIhUAAEBSdnZ2cEtOTpbH4wm5LCEh4Zy39l933XWaM2eO5s6dq9TUVGVlZem5555TXV2dZsyYocTERA0cOFBvvvlmyG3t3LlTEyZMUEJCgrKysjRt2jSdPHmyzTa/368//OEPmjhxou37t2zZMg0YMEAxMTEaPHiwfv/73wevO3DggDwej3bs2BG8rLKyUh6PRyUlJZKkkpISeTwevfnmm8rLy5PP59PGjRv1wQcf6Prrr1diYqKSkpKUl5enrVu3Bo8zceJEbd26VaWlpbbbAQAAgI6AhVQAAAAHXnjhBaWnp+u9997TnDlzNHPmTN1yyy36xje+oe3bt2vcuHGaNm2aTp8+LenMAuUNN9ygK664Qlu3btXatWtVXl6uW2+9tc3b+PDDD1VVVaVRo0bZanzttdf0wx/+UPPmzdPOnTv1/e9/XzNmzND69esv+lj333+/Fi1apF27dmn48OGaOnWqevXqpffff1/btm3T/fffr+jo6OD+vXv3VlZWlv7xj3/YagcAAAA6Ct7aDwAA4MCIESP005/+VJL0wAMPaNGiRUpPT9fdd98tSVqwYIGWLVumDz/8UKNHj9YzzzyjK664IuRDo5YvX67c3Fx9+umnGjRo0Dm3cfDgQXm9XmVmZp5z3dKlS/X888+HXNbS0qLY2Njg14sXL9b06dN1zz33SJKKioq0ZcsWLV68WNdff/1F3d+HH35Y3/rWt4JfHzp0SPfdd5+GDBkiSbrkkkvO+Ts5OTk6ePDgRd0OAAAA0NEwkQoAAODA8OHDg3/2er3q0aOHhg0bFrwsKytLknT8+HFJZz40av369cFzriYkJAQXIdt6+3t9fb18Pp88Hs85102dOlU7duwI2R5++OGQfXbt2qWrr7465LKrr75au3btuuj7++Wp2KKiIt11110qKCjQokWLWr0PcXFxwYlcAAAAwK2YSAUAAHDg7LexS5LH4wm57IvFz0AgIEmqra3VxIkT9fjjj59zrJ49e7Z6G+np6Tp9+rSampoUExMTcl1ycrIGDhwYcllrk6vnExV15v/WLcsKXtbc3Nzqvt27dw/5euHChfre976nv/zlL3rzzTdVXFys1atX6zvf+U5wn1OnTikjI+OimgAAAICOholUAACAdnTllVfq448/Vt++fTVw4MCQ7cuLlF8YOXKkJOmTTz6xdZtDhw7Vpk2bQi7btGmTLr30UkkKLnIeO3YseP3ZHzwVzqBBg3Tvvffq7bff1uTJk7VixYrgdQ0NDSotLdUVV1xhqx0AAADoKFhIBQAAaEezZs3SqVOnNGXKFL3//vsqLS3VW2+9pRkzZsjv97f6dzIyMnTllVdq48aNtm7zvvvu08qVK7Vs2TLt3btXTz75pP74xz9q/vz5ks689X706NHBD5HasGFD8Lyv51NfX6/Zs2erpKREBw8e1KZNm/T+++9r6NChwX22bNkin8+nMWPG2GoHAAAAOgoWUgEAANpRTk6ONm3aJL/fr3HjxmnYsGGaO3euUlJSgm+xb81dd92ll156ydZtTpo0SU899ZQWL16syy67TL/5zW+0YsUKXXfddcF9li9frpaWFuXl5Wnu3Ll69NFHwx7X6/WqoqJCt99+uwYNGqRbb71VEyZM0EMPPRTcZ9WqVZo6dari4+NttQMAAAAdhcc6+2RYAAAA6JDq6+s1ePBgrVmzxjXTnSdPntTgwYO1detW9evXz3QOAAAA4AgTqQAAAC4QFxenF198USdPnjSdcsEOHDigpUuXsogKAACAToGJVAAAAAAAAAAIg4lUAAAAAAAAAAiDhVQAAAAAAAAACIOFVAAAAAAAAAAIg4VUAAAAAAAAAAiDhVQAAAAAAAAACIOFVAAAAAAAAAAIg4VUAAAAAAAAAAiDhVQAAAAAAAAACIOFVAAAAAAAAAAI4/8DgxHMQknGoAEAAAAASUVORK5CYII="},"metadata":{}}]}]} \ No newline at end of file